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Chapter 1

Introduction

Option pricing became an important part of mathematical research in
1973 after the publication of the famous Black-Scholes formula [9], which
gives an analytical solution for the price of a European option under certain
conditions. When these conditions hold one is able to construct an option
from trading other assets following certain rules. The idea is to set up a
portfolio that is divided between a risk-free bank account and a position
in the underlying asset in order to replicate the payoff of the option. To
achieve this the proportions invested in the underlying and the bank account
are continuously rebalanced according to differential equations derived from
the model chosen to describe the market. This process is called hedging. If
the assumptions of Black and Scholes were correct, there would be no risk
in selling options as they could be replicated perfectly. However the Black-
Scholes assumptions do not hold in the real world and a perfect hedge is not
possible. This means that there is always some degree of risk that the final
value of the hedging portfolio and the option payoff do not match.

The fact that in real life a perfect hedge is not possible is acknowledged
by both practitioners and academics. It is understood that models taking
this aspect into account should be built. There are two main approaches
described in the literature. The first way is to make the risk as small as the
model allows. Here one may think of minimizing the variance of the difference
between the hedging portfolio and the option payoff. While this approach
minimizes risk, it does not take care of the difference between profit and loss,
which may happen highly negative. Mean-variance hedging - the approach
that minimizes the expected squared difference between the hedging portfolio
and the option payoff (see for example [45]) takes care of this problem but
has a different drawback - it punishes the trader for an extra profit he or she
might gain. Therefore a second way to deal with this risk has been developed
- maximization of the profit while making sure the risk does not become too

11
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high. The utility function approach allows one to do that. The maximization
of the expected utility gives one a strategy that maximizes the profit while
taking account of risk. Nevertheless despite thorough research made in this
field and the fact that it is well-developed from a theoretical point of view,
the utility approach is rarely used in practice mostly due to the difficulty of
defining the utility function of a trader.

The goal of this thesis is to explore the possibilities of constructing a
model that would reflect real life hedging better. In practice traders do not
hedge continuously because transaction costs make that infinitely expensive
and because of the traders’ physical limitations. Moreover traders do not al-
ways aim at hedging all the risk. Sometimes they maintain not fully hedged,
risky positions in an attempt to maximize their profits. These two phenom-
ena, discrete hedging and profit maximization, are two main points that we
address in our study.

First we study an agent who, although he or she is not allowed to trade
continuously, still tries to hedge the contingent claim as closely as possible
by minimizing the expected squared difference, or the distance, between the
option payoff and the value of the hedging portfolio. In this part of our
thesis we follow the line of Schweizer’s mean-variance hedging. Under the
assumption of independent stock returns we are able to find an explicit re-
cursion formulae for the optimization problem. The optimal initial capital
is the expectation of the option payoff under a certain measure called the
variance-optimal measure. We prove that if the distance between hedging
dates goes to zero then the variance-optimal measure converges to the risk-
neutral measure of the limiting Black-Scholes model and the optimal initial
capital converges to the Black-Scholes price.

Next, we construct a model with a cost of risk where a trader maximizes
his or her profit from hedging a portfolio of European options without using
a utility function. The limitation on the trader is imposed by a risk function
that depends on the the market state and the portfolio. According to the
value of this function, the trader is required to set aside some money as a
reserve. This reserve is modeled by an additional bank account paying an
interest rate lower than the risk-free one. The higher the risk of the trader
the more he or she has to borrow from the regular bank account in favor of
the reserve and the more he or she loses because of the lower interest rate.
The trader maximizes the expectation of his or her portfolio value at the
final point.

The prices of our model are defined in the indifference way. The indif-
ference buying and selling prices of a portfolio of options Φ in the presence
of another portfolio of options Ψ are defined as the amount of money that
makes an optimally behaving trader indifferent between buying or selling
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portfolio Φ and not buying or selling it, while holding portfolio Ψ. These
prices depend on the trader’s current portfolio and allow him or her to give
competitive quotes. They also depend on the direction of the quote (buy/sell)
and therefore the model produces bid-ask spreads. For a special form of the
risk function dependent on the portfolio Greeks, or sensitivities of the port-
folio value to the market parameters, we are able to solve the optimization
problem explicitly and find the analytic formulae for the indifference prices.
The mid indifference prices, or the average of the buying and the selling
prices, can be calibrated to the market.

This thesis is structured as follows. Chapter 2 introduces the basic defi-
nitions of contingent claims, arbitrage pricing and martingale measures and
presents a brief overview of pricing and hedging in complete markets. Chap-
ter 3 introduces the concept of implied volatility smiles and presents two ap-
proaches to the optimal hedging in incomplete markets: the mean-variance
hedging and the utility approach. Chapter 4 discusses mean-variance hedg-
ing and presents the convergence result. In chapter 5 we introduce our model
with cost of risk and the indifference prices and discuss the choice of the risk
function. Chapter 6 contains the numerical results for the model with cost
of risk. It presents some examples of the indifference prices and the results
of the calibration of the model to the market. We conclude the thesis with a
discussion and some directions for further research in chapter 7.
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Chapter 2

Complete Markets and
Hedging Portfolios

In chapter 2 we introduce the basic notions of a market model, a contin-
gent claim, a hedging strategy and an arbitrage opportunity. We define a
complete market model and show how the no-arbitrage assumption leads to
the prices of contingent claims. We define the notion of an equivalent mar-
tingale measure and show that in a complete model the prices of contingent
claims are equal to their expectations under a certain equivalent martingale
measure.

2.1 Market Models and Contingent Claims

We consider a financial market consisting of m+1 assets - m risky stocks
S1, . . . , Sm and a riskless bank account B. In this section we assume that
our market satisfies the following basic conditions. First, it is allowed to
buy, sell or hold any amount of an asset - also fractional, irrational and
negative amounts. Holding a negative number of a certain asset corresponds
to a short position in this asset. Next, unless stated otherwise the market is
frictionless, meaning that the trader does not have to pay any extra money
for a transaction and there are no bid-ask spreads (the buying and selling
prices are the same). And third, the market is absolutely liquid - one may
always buy or sell any amount of asset at its current price, and the buying and
the selling have no effect on existing prices. In this chapter we are focusing
on continuous-time models, which we mathematically define as follows.

Definition 2.1.1 We call a market model a probability space (Ω,F , P )
with a continuous filtration {Ft}0≤t≤T , where 0 ≤ T < +∞ is a finite

15
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time horizon. The zero-dividend stock prices Sk(t) are adapted nonnegative
stochastic processes Sk : [0, T ] × Ω → R+, which are assumed to be semi-
martingales, and the bank account process B(t) is a positive deterministic
function of time B : [0, T ] → R+.

For some of the examples of market models we refer the reader to the
Black-Scholes model (see [9] and [33]), local volatility model (see [15] and
[17]) and stochastic volatility model (see [24]).

The main problems in financial mathematics are the pricing and the hedg-
ing of financial contracts called options. The simplest examples of options
are European Puts and Calls. These are contracts that give their holder a
right to buy (if it is a Call) or to sell (if it is a Put) a predetermined asset
(the underlying) at a predetermined date (the maturity) at a predetermined
price (the strike). These options are also called plain vanilla options. The
more complicated contracts are called exotic options. American Puts and
Calls are the rights to buy or to sell a unit of stock at a certain price but
at any time before or on the maturity date. Asian options are options with
a payoff that depends on some average value of the underlying asset over a
certain time period. A knock-in (a knock-out) barrier option is a contract,
where the holder gets (loses) the right to sell or to buy the underlying asset
for the strike price if the underlying asset has hit a certain level (the barrier)
before the maturity date. The value of a European Call on asset Si at the
time of its maturity T is

max(Si(T ) −K, 0),

where K is the strike. This value is also called the payoff of the option. If
K = Si(t), then at time t the option is called at the money. If K > Si(t),
then at time t the option is called in the money if it is a Put or out of the
money if it is a Call. And vice versa a Call with K < Si(t) is called in the
money and a Put with K < Si(t) is called out of the money.

Finding the option value or a ”fair” amount of money which has to be
exchanged between the buyer and the seller of the option at some time before
maturity is called option pricing. By buying or selling an option the trader
accepts certain risks. Trading in the basic market assets in order to reduce
these risks is called hedging. Throughout this thesis we are mainly inter-
ested in the pricing and the hedging of vanilla options and other European
instruments. Therefore we use the following definition of a contingent claim.

Definition 2.1.2 We call a t-contingent claim any integrable Ft-measurable
random variable. An Ft-measurable random variable X of the form
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X = Φ(S1(t), . . . , Sm(t)), where Φ : Rm → R is a given (measurable) func-
tion, is called a simple contingent claim. Unless mentioned otherwise, under
a contingent claim we understand a T -contingent claim.

For example the payoff of a European Call on the ith asset is a simple
contingent claim.

2.2 Self-Financing Portfolios and Arbitrage

In this section we define a self-financing trader’s portfolio and the notion
of arbitrage. All these definitions are standard definitions of mathematical
finance and can be found for example in [8].

An agent trading in the market at each point in time has a position in
various traded assets. This position is called the trader’s portfolio. We model
the portfolio by means of an m+1-dimensional real valued stochastic vector
process θ(t) = (ψ(t), ϕ1(t), . . . , ϕm(t)), where the predictable ϕi(t) is the
number of the ith assets in the portfolio and the adapted ψ(t) is the amount
of cash in the bank account at time t. The value V θ of the portfolio at time
t is

V θ(t) =

m
∑

i=1

ϕi(t)Si(t) + ψ(t).

We restrict the set of portfolio processes to avoid some theoretically possible
but practically very unreasonable situations (e.g. winning in a casino by
always doubling the bets provided an unlimited credit is available). We
consider only strategies with gains that are bounded from below.

Definition 2.2.1 A portfolio process θ(t) = (ψ(t), ϕ1(t), . . . , ϕm(t)) is
called admissible if there exists α ≥ 0 (which may depend on ϕ) such that

m
∑

i=1

t
∫

0

ϕi(u)dSi(u) ≥ −α for all t ∈ [0, T ].

There is a special very important class of admissible portfolios which are
called self-financing. We call an admissible portfolio self-financing if there is
no infusion or withdrawal of money from the outside. The changes in value
of such portfolios are only due to the changes of the assets prices.
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Definition 2.2.2 We call an admissible portfolio process self-financing
if the dynamics of its value process for all t ∈ [0, T ] satisfy

dV θ(t) =
m
∑

i=1

ϕi(t)dSi(t) + ψ(t)
dB(t)

B(t)
.

One of the key concepts of mathematical finance is the concept of arbi-
trage. Loosely speaking, arbitrage is the possibility of getting a sure positive
profit without any initial investment. This might happen, for example, if
one trader quotes a lower price for an asset than another. Then buying the
asset from the first trader and immediately selling it to the second one would
produce a sure positive profit.

Definition 2.2.3 We call a self-financing portfolio process θ(t) an arbi-
trage opportunity in the financial market if the value V θ(t) of this portfolio
satisfies

V θ(0) = 0,

P (V θ(T ) > 0) > 0,

P (V θ(T ) < 0) = 0.

In practice these opportunities are very rare and if they happen they are
of very short duration. Indeed, the goal of each investor is to make his or
her profit as large as possible under a certain risk constraint. An arbitrage
opportunity is a riskless profit. Therefore if there is an arbitrage somewhere
in the market all investors who see it immediately begin buying or selling
the mispriced asset. The big orders very quickly drag the price back to its
equilibrium value. Therefore most market models work under the assumption
that arbitrage is not possible. Throughout this thesis we also assume:

Assumption 1 (The No Arbitrage Assumption) Price processes in
our market models do not allow arbitrage opportunities.

2.3 Arbitrage Pricing and Complete Markets

Finding the ”fair” value of a contingent claim is one of the most important
issues for the options traders. The concept of the no-arbitrage price or the
price that does not create arbitrage opportunities is a way of formalizing the
”fairness”. First we give the definition of a general valuation procedure.
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Definition 2.3.1 We call a pricing rule a mapping Πt : mFT → R,
which for any contingent claim H assigns a value Πt(H) ∈ R at all points of
time t ∈ [0, T ] such that Π·(H) is an adapted process with Πt(H) = 0 if and
only if H = 0 almost surely. The pricing rule is called consistent with the
model if

Πt(V
θ(T )) = V θ(t) (2.1)

for all self-financing strategies θ.

Let us fix a contingent claimX and imagine that we are able to construct a
portfolio θX = (ψX , ϕX) such that its terminal value is equal to the contingent
claim payoff:

V θX

(T ) = X,

then we say that contingent claimX is attainable. Note that in an arbitrage-
free market the price of an attainable contingent claim X is unique and equal
to the value of its replicating portfolio V θX

:

Πt(X) = V θX

(t).

This can be easily seen as follows. Suppose, Πt(X) > V θX

(t). Then selling
a unit of option, buying the portfolio and putting the rest of cash on the
bank account at time t has value zero at time t and a sure positive value at
maturity, which is an arbitrage strategy. Since we do not allow that in our
market, Πt(X) ≤ V θX

(t). A similar construction shows that the price cannot
be strictly greater than the value of the portfolio and hence (2.1) is true.
Therefore if we know how to replicate a contingent claim, we immediately
know its no-arbitrage price. This procedure is called arbitrage pricing.

Definition 2.3.2 A market model is said to be complete, if all contingent
claims bounded from below are attainable.

If the model is complete then for the pricing of a general contingent claim
X it is enough to find its replicating portfolio θX and set the price of X to
be equal the value of θX .

2.4 Arbitrage Pricing and Hedging in the

Generalized Black-Scholes Model

Let us show how arbitrage pricing works for a special case of a market
model — the generalized Black-Scholes model (see [9]). We specify the model
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by defining two asset price processes B(t) and S(t) on our earlier introduced
filtered probability space (Ω,F , {Ft}0≤t≤T ,P). B(t) and S(t) have the fol-
lowing dynamics

dB(t) = r(t)B(t)dt, (2.2)

B(0) = 1,

dS(t) = µ(t, S(t))S(t)dt+ σ(t, S(t))S(t)dW (t), (2.3)

S(0) = S0,

where r : [0, T ] → R+, µ : [0, T ] × R → R, σ : [0, T ] × R → R are given
functions and functions µ̂(t, s) = sµ(t, s) and σ̂(t, s) = sσ(t, s) satisfy

|µ̂(t, x)| + |σ̂(t, x)| ≤ C(1 + |x|) (2.4)

|µ̂(t, x) − µ̂(t, y)|+ |σ̂(t, x) − σ̂(t, y)| ≤ D|x− y| (2.5)

for all x, y ∈ R, t ∈ [0, T ] and some constants C,D ∈ R. W is a standard
Ft-Brownian motion. We consider a simple contingent claim X = Φ(S(T )),
where Φ : R → R is a measurable function.

Suppose now that F : [0, T ]×R → R is continuous and of class C1,2([0, T ]×
R) and solves the Cauchy problem (2.6).

∂F

∂t
+ rS

∂F

∂s
+

1

2
σ2s2∂

2F

∂s2
− rF = 0 (2.6)

F (T, s) = Φ(s),

where Φ is continuous in R and

|Φ(x)| ≤ A (1 + |x|α) ,

for some A, α > 0. Equation (2.6) is called the Black-Scholes equation. Note
that under the above model assumptions such F (t, s) exists (see [20]). Let
us define a portfolio θ(t) = (ϕ(t), ψ(t)) by

ϕ(t) =
∂F

∂s
(t, S(t)),

ψ(t) = F (t, S(t)) − S(t)
∂F

∂s
(t, S(t))

for all t ∈ [0, T ]. We claim that
(1) the portfolio θ is the hedging portfolio for contingent claim X and
(2) its price process V θ is given by

V θ(t) = F (t, S(t)).
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Note that (2) obviously follows from the definition of the portfolio value:

V θ(t) = ϕ(t)S(t) + ψ(t) = F (t, S(t)). (2.7)

Now, to see (1) we have to prove that θ(t) is self-financing and that the
final value of the portfolio coincides with the contingent claim payoff. Since
F (t, S(t)) is the solution to (2.6) and from (2.7) the final value of the portfolio
is equal to F (T, S(T )) = Φ(S(T )), the payoff of contingent claim X. Let us
finally show that θ(t) is self-financing. Consider its value process V θ(t). By
Itô’s rule we may write:

dV θ(t) = dF (t, S(t))

=

(

∂F

∂t
+ µS

∂F

∂s
+

1

2
σ2S2∂

2F

∂s2

)

dt+ σS
∂F

∂s
dW (t)

Now remembering again that F (t, S(t)) is the solution to (2.6) we have

dV θ(t) = rF (t, S(t))dt+ (µ− r)S
∂F

∂s
dt+ σS

∂F

∂s
dW (t)

=

(

F − S
∂F

∂s

)

rdt+
∂F

∂s
dS(t)

which is exactly

dV θ(t) = ϕ(t)dS(t) + ψ(t)
dB(t)

B(t)

and therefore θ is self-financing.
By the above reasoning we have shown that any simple contingent claim

in the generalized Black-Scholes model is attainable. Therefore its price is
equal to the value of its replicating portfolio, it is unique and does not depend
on individual preferences of the trader. Note that it also does not depend
on the drift µ of the underlying asset. Both of these facts — the uniqueness
and the independence of the drift — are not accidental and are corollaries of
a more general theory we are going to present in the next sections.

2.5 Martingale Measures and Risk-Neutral

Valuation

The notion of arbitrage pricing led us to the option price as the solution of
a certain backward partial differential equation. There is another approach
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to arbitrage pricing where the contingent claim prices are calculated as condi-
tional expectations under a special probability measure called the equivalent
martingale measure. If the equivalent martingale measure is unique it is
called the risk-neutral measure and this pricing method (producing unique
no-arbitrage prices) is called risk-neutral valuation.

Imagine we have to price a contingent claim, and its price process is
known to be a martingale. Then the only thing we have to do to find prices
is to take a conditional expectation of its final payoff. Unfortunately the
martingale property does not hold for the real-life prices. Nevertheless we
may still use this technique if we are able to find a measure Q (equivalent
to P) such that the discounted price processes in the new model (Ω,F ,Q)
become martingales.

Definition 2.5.1 A measure Q on a measurable space (Ω,F) is said to
be absolutely continuous with respect to a measure P on F (Q << P) if for
all A ∈ F

P(A) = 0 ⇒ Q(A) = 0. (2.8)

If we have both Q << P and P << Q, then Q and P are said to be equivalent
(Q ∼ P).

Definition 2.5.2 A measure Q on (Ω,F) is said to be an equivalent
martingale measure if

• Q is equivalent to P.

• The discounted spot price processes Si(t)/B(t), i = 1, . . . , m are Ft-
martingales under Q.

The following proposition shows that defining an equivalent martingale
measure Q is equivalent to defining a pricing rule Πt consistent with the
model.

Proposition 2.5.1 There is a one-to-one correspondence between linear
pricing rules Πt consistent with the model and equivalent martingale measures
Q via

(i) Πt(X) = EQ
(

B(t)
B(T )

X | Ft

)

,

(ii) Q(A) = Π0

(

B(T )
B(0)

1A

)

for any contingent claim X and A ∈ F .
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This proposition is proved in Harrison and Pliska [23] for a model with
discrete time set and finite state space. The more general version of the
proposition is a corollary of the fundamental theorem presented in Delbaen
and Schachermayer [14].

Note that the pricing rule Πt defined in proposition 2.5.1 produces arbitrage-
free prices. Let there exist an arbitrage opportunity θ with V θ(0) = 0,
P(V θ(T ) < 0) = 0 and P(V θ(T ) > 0) > 0. Then (since Q ∼ P) we have that

Q(V θ(T ) < 0) = 0

Q(V θ(T ) > 0) > 0.

Then

Π0(V
θ(T )) = EQ

(

B(0)

B(T )
X

)

> 0

and since by proposition 2.5.1 Πt is consistent with the model

V θ(0) = Π0(V
θ(T )) > 0.

Hence the arbitrage opportunities do not exist and Πt does not produce arbi-
trage. So if a martingale measure exists, then taking conditional expectations
under it provides us with arbitrage-free prices. If this measure is unique, then
it is called the risk-neutral measure and this pricing procedure is referred to
as the risk-neutral valuation. We will discuss an example of this method in
the next section.

2.6 Risk-Neutral Valuation in the Black-Scholes

Model

Let us show how risk-neutral valuation works on the example of a Eu-
ropean Call in the generalized Black-Scholes model (2.2)-(2.3). To find the
equivalent martingale measure we use Girsanov’s theorem.

Theorem 2.6.1 (Girsanov, one dimension) Let W (t) be a Brownian
motion on a probability space (Ω,F ,P) with respect to the filtration {Ft}Tt=0.
Let Θ(t) be an adapted process. Define

Z(t) = exp







−
t
∫

0

Θ(s)dW (s) − 1

2

t
∫

0

Θ2(s)ds







,

W̃ (t) = W (t) +

t
∫

0

Θ(s)ds,
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and assume that

E exp







1

2

T
∫

0

Θ2(s)ds







< ∞. (2.9)

Set Z = Z(T ). Then EZ = 1 and under the probability measure P̃ given by

P̃(A) =

∫

A

Z(ω)dP (ω) for all A ∈ F

the process W̃ (t) is a Brownian motion.

Note that by its construction P̃ is equivalent to the initial measure P.
The proof of Girsanov’s Theorem may be found in [28].

Assume that inf
t,s
σ(t, s) > 0 and let us consider processes Θ(t) of a special

form

Θ̃(t) =
µ(t, S(t)) − r(t)

σ(t, S(t))
(2.10)

then the measure P̃ will be an equivalent martingale measure. Indeed, let us
write the dynamics of the discounted stock process S(t)/B(t)

d
S(t)

B(t)
= (µ(t, S(t)) − r(t))

S(t)

B(t)
dt+ σ(t, S(t))

S(t)

B(t)
dW (t).

under P̃. From theorem 2.6.1 the old Brownian motion W (t) relates to the
new W̃ (t) via

dW (t) = dW̃ (t) − µ(t, S(t)) − r(t)

σ(t, S(t))
dt

and thus

d
S(t)

B(t)
= σ(t, S(t))

S(t)

B(t)
dW̃ (t).

So the discounted stock price process is a martingale and P̃ = Q is an equiv-
alent martingale measure.

Moreover, there are no other equivalent martingale measures in the gen-
eralized Black-Scholes model. We are going to use the converse Girsanov
2.6.2 and martingale representation 2.6.3 theorems for the proof of this fact.
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Theorem 2.6.2 (The Converse of the Girsanov, one dimension)
Let W (t) be a Brownian motion on (Ω,F , P ) with respect to filtration {Ft}Tt=0

generated by W (t). Assume that there exists a probability measure Q, such
that Q ∼ P on FT . Then there exists an adapted process Θ such that if we
define

Z(t) = exp







−
t
∫

0

Θ(s)dW (s) − 1

2

t
∫

0

Θ2(s)ds







then for all A ∈ F

Q(A) =

∫

A

Z(T, ω)dP (ω).

The proof can be found in [8].

Theorem 2.6.3 (Martingale representation theorem) Let W (t) be
a Brownian motion on a probability space (Ω,F ,P), with respect to filtration
{Ft}Tt=0 generated by W (t). Let M(t) be an Ft-martingale process. Then
there exists an adapted process Γ(t) such that

M(t) = M(0) +

t
∫

0

Γ(u)dW (u).

We refer the reader to [28] for the proof.
Let Q be an equivalent martingale measure. Then by the converse Gir-

sanov theorem 2.6.2 there exists a measurable adapted square integrable
process Θ(t) such that

W̃ (t) = W (t) +

t
∫

0

Θ(s)ds

is a Brownian motion under Q. Thus we may write the dynamics for Ŝ(t) =
S(t)/B(t) under Q as

dŜ(t) = (µ(t, S(t)) − r(t) − σ(t, S(t))Θ(t))Ŝ(t)dt+ σ(t, S(t))Ŝ(t)dW̃ (t).

Since Q is a martingale measure and Ŝ(t) is a martingale then by theorem
2.6.3 we must have

Θ(t) =
µ(t, S(t)) − r(t)

σ(t, S(t))
,
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as in (2.10). Therefore the equivalent martingale measure in the generalized
Black-Scholes model is unique. So we may define the price process for an
arbitrary contingent claim X as the conditional expectation with respect to
the risk-neutral measure Q of its discounted payoff:

Πt(X) = EQ

(

B(t)

B(T )
X

∣

∣

∣

∣

Ft

)

for all t ∈ [0, T ]. This price process is a martingale, therefore by the martin-
gale representation theorem 2.6.3 it can be replicated. Thus we have proved
that the generalized Black-Scholes model (2.2)-(2.3) is complete. And there-
fore any contingent claim in this model has a unique no-arbitrage price.

Note that the drift of the non-discounted stock process under the risk-
neutral measure is equal to the risk-free rate:

dS(t) = r(t)S(t)dt+ σ(t, S(t))S(t)dW̃ (t),

which reflects the fact that the growth of a riskless portfolio is exactly the
same as the growth of the bank account. This also explains the phenomenon
we have noticed in section 2.4: the price of a simple contingent claim does
not depend on the drift µ of the underlying asset S(t).

We would like to consider an even more special case of the model in order
to get an analytical formula for the price of the European Call. Let us assume,
that all model parameters - the drift µ, the volatility σ and the interest rate
r are constants. This is the classical Black-Scholes model, presented in Black
and Scholes [9] and Merton [33]. The underlying asset has the following
dynamics under Q:

dS(t) = rS(t)dt+ σS(t)dW̃ (t). (2.11)

Therefore at the maturity date of the option under Q conditionally on Ft the
underlying asset price has the following form:

S(T ) = S(t) exp

{(

r − 1

2
σ2

)

(T − t) + Y σ
√
T − t

}

,

where Y is a standard normal random variable under Q. Now using propo-
sition 2.5.1, we calculate the unique price of the Call option as

C(t, S(t)) = Πt (max(S(T ) −K, 0))

= EQ
(

e−r(T−t) max(S(T ) −K, 0)|Ft

)

=
e−r(T−t)√

2π

+∞
∫

−∞

max
(

e(r−
1
2
σ2)(T−t)+zσ

√
T−t −K, 0

)

e−
z
2

2 dz
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Performing the integration we get the famous Black-Scholes formula for the
European Call option:

C(t, S) = SN(d1) −Ke−r(T−t)N(d2), (2.12)

d1 =
ln(S/K) +

(

r + 1
2
σ2
)

(T − t)

σ
√
T − t

,

d2 = d1 − σ
√
T − t,

where N(x) is the standard normal distribution function. In the similar way
one may derive the Black-Scholes formula for the European Put:

P (t, S) = Ke−r(T−t)N(−d2) − SN(−d1). (2.13)
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Chapter 3

Incomplete Models

In chapter 2 we introduced the notion of a complete market model and
the Black-Scholes model as its example. If the real market followed the
assumptions of Black and Scholes all options could be hedged in a riskless
way and their prices would satisfy the explicit Black-Scholes formula. The
volatility parameter of the model is a feature of the underlying asset and is
the same for options with different strikes and maturities. Then inverting the
market prices of options on the same underlying as a function of volatility
would produce one value of the parameter for all options. In the this chapter
we show that in reality this is not the case and therefore the assumption of
constant volatility is not realistic.

The market completeness assumption itself is also often violated. In gen-
eral, it is not possible to find a self-financing replicating strategy for a given
contingent claim. Instead, many different strategies, each of them less than
perfect in terms of replication, usually exist. Hence an optimization pro-
cedure is needed in order to choose one hedging strategy from those non-
replicating ones. This chapter presents two approaches to defining the opti-
mization problem, which differ in the way they deal with the unhedged risk.
The quadratic hedging makes the risk as small as the incomplete model al-
lows, consequently minimizing a possible profit as well. The utility approach
maximizes the trader’s profit while controlling the risk according to the risk
preferences defined by a utility function.

The structure of the chapter is as follows. First we introduce the no-
tion of an implied volatility smile. Then we consider optimization methods
for hedging and pricing of options: the quadratic hedging and the utility
approach.

29
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3.1 Volatility Smiles

Implied volatility is the volatility determined from market prices of Eu-
ropean options by inverting the Black-Scholes formula (2.12) or (2.13). To
be more precise, we say that at a given time t, the risk-free rate r, under-
lying asset value S, strike price K, maturity date T and the market price

of a European option Cmarket the implied volatility σ̂ is the value of the

parameter σ that produces the market price Cmarket, when inserted in the
Black-Scholes formula (2.12) for a European Call together with the rest of
the parameters:

Cmarket = BS (t, S,K, T, r, σ̂) .

It is market practice to quote vanilla options not as their prices but as implied
volatilities. Quoting volatilities rather than prices makes it easier to compare
relative values of Calls and Puts across strikes and expirations. Since valuing
an option is essentially linked to one’s view of uncertainty associated with the
future prices of the underlying asset, implied volatility is the most natural
way of expressing it.

If the market were consistent with the Black-Scholes model (2.11) then
the implied volatilities would be the same for all European options on the
same underlying asset, since the volatility parameter σ is constant in this
model. However, after the market crash on the 19th of October 1987, im-
plied volatilities of equity options started to exhibit strong variability across
strikes and maturities (see, for example, [15]). Nowadays this phenomenon is
observed in FX, equity, interest rate and other options. Figure 3.1 presents
the implied volatilities for the DAX options plotted against their maturities
and strike prices. The surface seen on this graph is the so-called implied
volatility surface. As we can see, the implied volatility surface is far from
being flat, thus contradicting the Black-Scholes model. Because of its shape
the graph of implied volatilities against strikes for some fixed maturity date
is usually referred to as an implied volatility smile or an implied volatility
skew, see, for example figure 3.2. Most of other liquid options markets also
demonstrate non-flat volatility surfaces.

This example shows that the assumptions of Black-Scholes are too restric-
tive to hold true in real world markets. All later option pricing models relax
various of those assumptions in order to capture the phenomenon of volatility
smiles in option prices they produce. See, for example, [15], [17], [34] or [24].
The model we will present in chapter 5 is also capable of producing implied
volatility smiles.
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Figure 3.1: Volatility Surface for DAX on Feb 13, 2006.
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3.2 Quadratic Hedging

Quadratic hedging is a way to find an optimal hedging strategy in a gen-
eral incomplete market setting by minimizing the expected squared hedging
error or the expected squared hedging costs. The expectation of squared
difference is the distance in L2, thus minimization of the expected squared
error is the minimization of this distance between the contingent claim and
the trading strategy. In other words we look for the optimal strategy as an
L2-approximation of the contingent claim.

Through the rest of the section we follow the assumptions of Schweizer
[45] and assume asset prices S to be the discounted prices of the underlying
assets. Then the riskless bank account is identically equal to 1. Under the
assumption of non-stochastic interest rates this does not affect the generality.
If we denote by Θ the space

Θ =
{

θ ∈ L(S)|G(θ) ∈ S2(P)
}

.

where L(S) is the space of all Rd-valued predictable processes integrable with
respect to S and S2(P) is the space of square-integrable semimartingales. The
total gains up to time t from trade using the trading strategy θ is

Gt(θ) :=

t
∫

0

θ(u)dS(u)

then GT (Θ) is the set of all attainable payoffs.
The basic framework of quadratic hedging by means of a self-financing

strategy may be described as follows. We look for a self-financing portfolio
θ and initial capital c ∈ R that solve

min
(c,θ)∈R×Θ

E [X − c−GT (θ)]2 (3.1)

for a contingent claim X.
If non-self-financing portfolios are also allowed, then if θ = (ξ, η) is a

hedging strategy, ξ(t) - the number of stocks in the hedging portfolio and
η(t) - the amount of money in the bank account, V (t)θ = ξ(t)S(t) + η(t) is
the value process assumed to be square-integrable and V θ(T ) = X, then the
problem is to minimize the accumulated cost

Rθ(t) = E
[

(

Cθ(T ) − Cθ(t)
)2 |Ft

]

, 0 ≤ t ≤ T,

Cθ(t) = V θ(t) −
t
∫

0

ξ(u)dS(u)
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in the following sense:

Definition 3.2.1 An admissible continuation of a trading strategy θ =
(ξ, η) from time t ∈ [0, T ) on is a trading strategy θ̃ = (ξ̃, η̃) satisfying

ξ̃(s) = ξ(s), for s ≤ t,

η̃(s) = η(s), for s < t,

and

V θ(T ) = V θ̃(T ) P − a.s. (3.2)

The problem is to find a trading strategy θ such that for any t ∈ [0, T )
and any admissible continuation θ̃ of θ from t on

Rθ̃(t) ≥ Rθ(t) P − a.s. (3.3)

Such strategy is called R-minimizing.
Problems (3.1) and (3.3) are referred to as quadratic hedging. Problem

(3.3) is considered in Schweizer [42], where he shows that for any contingent
claim X a unique R-minimizing strategy exists and it is mean-self-financing
(e.g. its cost process is a martingale). Föllmer and Sonderman [18] were
the first to approach the solution of (3.1). They considered a special case
where S is a martingale. Bouleau and Lamberton [10] have also restricted
themselves to the martingale case while considering a Markovian formulation
in order to get explicit solutions. The first attempt to extend the solution
to the semimartingale case was made by Duffie and Richardson [16] for geo-
metric Brownian motion and a particular case of hedging a non-traded asset
with futures on another asset, correlated with the first one. Schweizer [41]
generalizes this result to the hedging of an arbitrary contingent claim. For
discrete time Schäl [40] considers the problem of cost minimization for the
case of a constant investment opportunity set and gives conditions under
which the price of the option does not depend on the choice of quadratic
minimization criterion. Schweizer [44] also works in discrete time and solves
the optimization problem for self-financing portfolios. Schweizer [43] and
Monat and Stricker [35] work in continuous time but under strong restric-
tions on the underlying process. These two papers focus mainly on finding
the optimal strategy θ(c) for a given initial capital c: given X ∈ L2(P) and
c ∈ R solve

min
θ∈Θ

E [X − c−GT (θ)]2 , (3.4)
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while Schweizer [45] is also interested in computing the optimal c:

min
(c,θ)∈R×Θ

E [X − c−GT (θ)]2 .

It shows that the optimal initial capital c is the expectation of the final payoff
under a certain measure, which is called the variance-optimal measure.

Definition 3.2.2 A signed measure Q on (Ω,F) is called a signed
Θ-martingale measure if Q(Ω) = 1, Q << P with dQ

dP
∈ L2(P) and

E

(

dQ

dP
GT (θ)

)

= 0 for all θ ∈ Θ.

All signed Θ-martingale measures are denoted by Ps(Θ).A signed Θ-martingale
measure P̃ is called variance-optimal if P̃ solves

V ar

(

dP̃

dP

)

= min
Q∈Ps(Θ)

Var

(

dQ

dP

)

.

If Ps(Θ) is not empty then P̃ exists and is unique since its density dP̃
dP

is

obtained by minimizing
∥

∥

dQ
dP

∥

∥

L2 over the closed convex set
{

dQ
dP
|Q ∈ Ps(Θ)

}

.
Schweizer [45] proves that if (3.1) has a solution (c, θ) for X ∈ L2(P), then the
optimal initial capital c is an expectation of X under the variance-optimal
measure:

c = EP̃(X). (3.5)

If the time set is discrete then the variance-optimal measure P̃ may be ex-
plicitly constructed by backward recursion. Let 0 = t0 < t1 < . . . < tN = T
be the time set, then

dP̃

dP
=

Z̃0

E
[

Z̃0
] ,

where

Z̃0 =
N
∏

j=1

(1 − βj∆Sj−1) , (3.6)

and

βk =

E

[

∆Sk−1

N
∏

j=k+1

(1 − βj∆Sj−1)

∣

∣

∣

∣

∣

Fk−1

]

E

[

∆S2
k−1

N
∏

j=k+1

(1 − βj∆Sj−1)
2

∣

∣

∣

∣

∣

Fk−1

] , k = 1, . . . , N (3.7)
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assuming that an empty product is equal to 1. In chapter 4 we revisit this
topic and consider the variance-optimal measure in the generalized Black-
Scholes setting.

In continuous time the variance-optimal measure can also be constructed
via a continuous adjustment process β. If Eψt denotes the stochastic ex-

ponential of −
t
∫

0

ψdS (or a solution of a stochastic differential equation

dY (t) = −Y (t−)ψ(t)dS(t), Y (0) = 1), then

dP̃

dP
=

Z̃0

E
[

Z̃0
] ,

where

Z̃0 = EβT ,

where β ∈ L(S) is such that βEβ− ∈ Θ and E
[

EβTGT (θ)
]

= 0 for all θ ∈ Θ.

Schweizer [45] shows that under the assumption of non-empty Ps(Θ) process
β is unique in the following sense: all adjustment processes β coincide on
{Eβ− 6= 0} ⊆ Ω × [0, T ] and {Eβ− 6= 0} does not depend on the choice of
β. Under the same assumption the existence of the adjustment process β is
equivalent to the existence of a solution (β, U) ∈ L(S)×S2 of the backward
SDE

dU(t) = −U(t−)β(t)dS(t),

U(T ) = π(1),

where π is L2(P)-projection on GT (Θ).
The following theorem gives the relation between the solutions of prob-

lems (3.1) and (3.4).

Theorem 3.2.1 (Schweizer, 1996) If Ps(Θ) is not empty, GT (Θ) is
closed in L2(P), X ∈ L2(P) is fixed and θ(c) denotes the solution of (3.4) for
the initial capital c, then

1. (EP̃ [X] , θ(EP̃[X])) solves (3.4),

2. θ(EP̃[X]) minimizes Var [X −GT (θ)] over all θ ∈ Θ,

3. if additionally E
(

dP̃
dP

)2

6= 1 and cm denotes

cm =
mE

[

dP̃
dP

]2

−EP̃[X]

E
[

dP̃
dP

]2

− 1
,
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then θ(cm) is also the solution of

min
θ∈Θ

V ar [X −GT (θ)]

s.t. E [X −GT (θ)] = m

for a given m ∈ R.

(Note that since GT (Θ) is closed in L2(P) then (3.4) has a solution θ(c)

for any c ∈ R.)
Gourieroux et al. [21] solve the same problem by introducing the hedging

numeraire, which is a strictly positive value process of a self-financing hedg-
ing strategy. Using this process as a deflator and also as a traded asset, they
give a simpler equivalent formulation of the optimization problem. Laurent
and Pham [29] apply dynamic programming methods to the problem with
numeraire and thus provide an explicit form for the value process and the
variance-optimal martingale measure. Černý [47] revisits the discrete time
case and extends Schäl [40] to a non-constant investment opportunity set and
by means of dynamic programming gets a recursive procedure for optimiza-
tion, which is very well suited for computer implementation. He also shows
how the variance-optimal measure arises in the dynamic programming solu-
tion and how one defines conditional expectations under this (generally not
equivalent) measure. We will come back to this topic in chapter 4 and derive
some properties of the optimal hedging strategies and the variance-optimal
measure in the generalized Black-Scholes model.

Theoretically finding the trading strategy, which is the closest (in some
sense) to the payoff, is a natural extension of the complete market theory,
where the distance can be minimized to zero. Nevertheless the minimization
of the expected squared error minimizes not only the risk but also the profit.
This fact makes the quadratic hedging model not very realistic as the trader’s
goal is the maximization of profit under certain risk constraints. A way to
address this problem is the utility maximization, which we discuss in the
following section.

3.3 Utility Functions and Indifference Pric-

ing

Another way to find an optimal hedging strategy is the maximization of
the expected utility of profit. Under the profit we understand either the total
consumption if consumption is non-zero or the final payoff if the portfolio is
self-financing or combination of both.
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According to a general economic theory, utility is a measure of the relative
satisfaction from getting a certain good. It is described by a utility function
U : G→ R, where G is the set of available goods. The utility function allows
the consumer to rank G according to his or her preferences:

g1 ≺ g2 ⇔ U(g1) < U(g2).

Marginal utility is the increase in the utility obtained by consuming a unit of
a good. The law of diminishing marginal utility first proposed in Bernoulli
[5] states that the marginal utility decreases with the increase of the con-
sumption of a certain good. So each additional unit will increase the utility
less than the ones before it. In other words, the more we get of something
the less we value each additional unit of it.

In mathematical finance all goods are money, which corresponds to setting
G = R and a continuous monotonously increasing concave utility function
U : R → R. Note that since U is monotonous it keeps the relation on the
real numbers. For all x1, x2 ∈ R

x1 ≺ x2 ⇔ U(x1) < U(x2) ⇔ x1 < x2.

The marginal utility is then the derivative U ′ of the utility function and
the concavity ensures that it decreases and therefore the law of diminishing
marginal utility holds.

The maximization of expected utility in finance was first used for the
consumption-portfolio optimization, where the problem is to maximize the
expected utility of the portfolio consumption:

max

T
∫

0

e−rtU(C(t))dt,

or

max
N
∑

k=1

e−rtkU(C(tk))

for the discrete time case, where C(t) is the portfolio consumption per unit of
time. Markowitz [30] solved the problem for a one period model, Samuelson
[39] generalized the solution to the multi-period case and Merton [32] formu-
lated the continuous time version for the portfolio of assets with dynamics
following the geometric Brownian motions. The same paper gives an explicit
solution for the special case of utility functions such that

−U
′′

U ′ (x) =
1

x
1−γ + η

β

,
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for some γ > 1, β > 0, η = 1 if γ = −∞ and

βx

1 − γ
+ η > 0,

the so called hyperbolic absolute risk-aversion (or HARA) utility functions.
Note that the mean-variance hedging problem (3.4) from section 3.2 can

be reformulated in terms of quadratic utility maximization

max
θ∈Θ

E
[

Ũ (X −GT (θ))
]

,

with

Ũ(x) = x− 1

2c
x2. (3.8)

Nevertheless the utility theory cannot be fully applied to the expected squared
error minimization problem as Ũ defined in (3.8) monotonously increases only
for x < c.

Basak and Shapiro [2] provides analytical solutions for the expected util-
ity maximization under a constraint on the trader’s Value-at-Risk (VaR) and
under a Limited-Expected-Loss (LEL) constraint. Value-at-Risk of a portfo-
lio θ is the loss, which is exceeded with some given probability α over a given
horizon (see, for example [27]):

P
[

V θ(0) − V θ(T ) ≤ V aR(α)
]

= 1 − α, 0 ≤ α ≤ 1.

The constraint on VaR may be written as

P
[

V θ(T ) ≥ F
]

≥ 1 − α (3.9)

for some exogenously defined ”floor” F . Basak and Shapiro [2] argues that
since a trader with constraint (3.9) is concerned with controlling the proba-
bility of a loss rather then its magnitude the expected losses may be higher
than those of an unconstrained trader. They propose a LEL-risk management
instead with a constraint

EQ
[

F − V θ(T )1{V θ(T )≤F}
]

≤ ε

for some constant ε ≥ 0. The strategies optimal under this constraint show
smaller losses then those of an unconstrained trader.

Another application of the expected utility maximization is the hedging
of options in the presence of transaction costs. Transaction costs make the
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continuous trading infinitely expensive when asset prices have infinite varia-
tion and thus perfect replication is impossible. The utility based approach for
proportional transaction costs was first proposed by Hodges and Neuberger
[25]. They solve the problem

JΦ(0, S0, x0, y0) = maxE [U(VT )] (3.10)

VT = xTST − k(xT , ST ) + yT − Φ(ST ),

where Φ(·) is the option’s payoff k(x, S) is the transaction fee for selling x
stocks for the price S, xt is the number of stocks and yt is the amount of cash
in the hedging portfolio at time t. Davis and Norman [12] have formulated
the utility maximization as a singular stochastic control problem and Davis
et al. [13] have proved that the problem of Hodges and Neuberger amounts
to the problem of Davis and Norman with singular control.

Hodges and Neuberger [25] were the first to introduce the notion of in-
difference prices — the amount of money which makes the trader indifferent
between (1) selling or buying an option and then optimize utility and (2)
maximizing his or her utility without an option. If JΦ(0, S0, x0, y0) is the
solution of (3.10) for payoff Φ, then the indifference selling price ps is defined
by

JΦ(0, S, 0, ps) = J0(0, S, 0, 0),

and the indifference buying price pb by

J−Φ(0, S, 0,−pb) = J0(0, S, 0, 0).

So the indifference price is the initial capital that results in the same optimal
value function for the option buyer or seller as the zero initial capital for the
trader in the underlying market. Davis et al. [13] also define the indifference
prices for their model in a similar way. They prove that if a replicating port-
folio exists, then the indifference price is equal to the price of the replicating
portfolio. Stoikov [46] introduces the notion of the relative indifference price
— an amount of money which makes the trader indifferent between hedging
a portfolio of options and hedging this portfolio of options plus the option
to be priced. This model allows the trader to quote competitive prices that
depend on his or her portfolio.

Musiela and Zariphopoulou [36] find explicit solutions for the indifference
price of a European claim G under the assumptions of lognormal dynamics
of the underlying assets and exponential utility function U(x) = − exp(−γx)
for some γ > 0. The underlying asset of the claim G is assumed to be
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non-traded, its observed level follows the dynamics given by:

dY (s) = b(s, Y (s))ds+ a(s, Y (s))dW 1(S), s ≥ t,

Y (t) = y

for some y ∈ R. It assumes the existence of a riskless bank account B.
Without the loss of generality the risk-free rate r = 0. The trader’s goal is to
maximize his or her utility at time T by trading B and a risky traded asset
S correlated with Y . S follows the Black-Scholes dynamics

dS(s) = µS(s)ds+ σS(s)dW 2(s), s ≥ t,

S(t) = S,

with S > 0 and 〈dW 1(t), dW 2(t)〉 = ρdt. Under the assumptions above
[36] shows that the indifference selling price of G = g(Y (T )) is a non-linear
functional of the option’s payoff:

h(t, y) =
1

γ (1 − ρ2)
lnEQ̃

[

eγ(1−ρ2)g(Y (T ))
∣

∣

∣
Y (t) = y

]

,

where the measure Q̃ is defined by

Q̃(A) = EP

[

exp

{

−µ
σ
W 2(T ) − 1

2

µ2

σ2
T

}

1A

]

, A ∈ FT .

The utility theory is a way to combine the profit maximization and the
risk management according to the trader’s risk preferences. Unfortunately
practitioners do not like using utility functions as in most cases it is impos-
sible to determine the utility function of a trader (see [11]). In chapter 5
we propose a model, in which the risk management and the risk preferences
are modeled without utility functions, directly in terms of observable market
parameters and the trader’s current position in options. We define relative
indifference prices of a portfolio of European options dependent on current
traders’ portfolios.



Chapter 4

Mean-Variance Hedging for
Black-Scholes Dynamics

One of the possible reasons for market incompleteness is the impossibility
of continuous trading. This chapter is dedicated to a model which reflects
this feature. The discrete dates at which trades may be performed are fixed
and the expectation of the squared difference between the terminal values
of the hedging portfolio and the option payoff is minimized. This brings
us to the mean-variance hedging of Schweizer [45] which we described in
chapter 3. As in Černý [47] we apply the dynamic programming method to
the minimization. This allows us to get recursive formulae for the optimal
strategy and the optimal initial capital. We prove that the cost function is a
quadratic function of the portfolio value, which makes the recursive formulae
simpler than those of Černý [47].

Under the assumption of independent returns the analytic formula for the
variance-optimal measure immediately follows. We prove that the Radon-
Nikodym derivative of this measure with respect to the real-world measure
converges in L2 to the Radon-Nikodym derivative of the risk-neutral measure
of the limiting complete model as the distance between the hedging dates
goes to zero. Mercurio and Vorst [31] also consider convergence properties of
the model but include only the convergence of European options prices but
not measures. Černý [47] presents a heuristic proof of weak convergence of
variance-optimal measure to the risk-neutral measure.

4.1 Formulation of Hedging Problem

We consider a discrete-time market model. The set of time points
T = {0 = t0 < t1 < ... < tN = T} represents the fixed hedging dates

41
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and the maturity date with ∆tk = tk+1 − tk (k = 0, ..., N − 1), the time
periods between successive hedges. Through the rest of this thesis we use
the following notation:

Xk = X(tk), k = 0, . . . , N,

∆Xk = Xk+1 −Xk, k = 0, . . . , N − 1

for any process X, in other words we work with forward differences. We
assume that our market consists of m risky assets S1, ..., Sm : Ω × T → R+

and a riskless bank account B : T → R+ with the following dynamics

{

Bk = ertk

Sik+1 = SikR
i
k, i = 1, ..., m, k = 0, ..., N − 1,

(4.1)

where ~S0 = (S1
0 , . . . , S

m
0 ) and ~Rk = (R1

k, . . . , R
m
k ), k = 1, ...N − 1 are m-

dimensional random vectors. The corresponding filtration is {Fk}Nk=0, Fk =

σ({~S0, ~R0, ..., ~Rk−1}), k = 0, . . . , N . We assume that all assets are linearly
independent.

The trader has to hedge a simple T -contingent claim with payoff
Φ(S1

N , . . . , S
m
N ), where Φ : Rm → R is a measurable function. A hedging

portfolio (or a hedging strategy) is a pair of adapted processes {φ, ψ}, where
φ : Ω × T \ {tN} → Rm represents the numbers of underlying assets and
ψ : Ω × T \ {tN} → R the number of bonds in the account B. Note that
the portfolio process is not defined at the maturity date because there is no
hedging at maturity. We denote the value of the hedging portfolio by V :

Vk = (φk)
TSk + ψkBk, k = 0, . . . , N − 1, (4.2)

VN = (φN−1)
TSN + ψN−1BN .

Definition 4.1.1 The set of admitted trading strategies A consists of
all self-financing strategies such that the changes in the portfolio value may
happen only due to the changes in the traded assets prices.

A =
{

(φ, ψ) | ∆((φk)
TSk + ψkBk) = (φk)

T∆Sk + ψk∆Bk ∀k = 0, . . . , N − 1
}

The trader’s goal is to minimize the expected squared difference be-
tween the terminal value of the hedging portfolio VN and the option payoff
Φ(S1

N , . . . , S
m
N ) over all admitted strategies:

min
(φ,ψ)∈A

E
[

VN − Φ(S1
N , . . . , S

m
N )
]2

(4.3)
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If strategy (φ, ψ) is admitted, then for all k = 0, . . . , N − 1

Vk+1 = Vk + (φk)
T∆Sk + ψk∆Bk

= Vk + (φk)
T (diag(Rk) − I)Sk + ψkBk

(

er∆tk − 1
)

, (4.4)

where diag(Rk) is a diagonal m×m matrix d with diagonal elements dii = Ri
k

for i = 1, . . . , m and I is the unit matrix of dimension m. From the definition
of the portfolio value Vk in (4.2) we derive that

ψkBk = Vk − (φk)
T Sk, (4.5)

which we substitute in (4.4) to get

Vk+1 = Vk + (φk)
T (diag(Rk) − I)Sk +

(

Vk − (φk)
T Sk

)

(

er∆tk − 1
)

.

Hence if the strategy is admitted then the portfolio value dynamics may be
written as

Vk+1 = Vke
r∆tk + (φk)

T
(

diag(Rk) − er∆tkI
)

Sk.

Let us formulate optimization problem (4.3) in terms of a dynamic program-
ming problem. Note, that for any adapted process φ there exists a unique
adapted process ψ (defined by 4.5) such that the strategy (φ, ψ) is admitted.
Therefore the optimization over all admitted strategies (φ, ψ) is equivalent
to the optimization over all adapted processes φ.

4.2 Dynamic Programming Problem

First let us recall some general definitions and the theorem describing the
dynamic programming method. Consider a discrete-time dynamic system

xk+1 = hk(xk, uk, wk), k = 0, 1, . . . , N − 1,

where xk ∈ Mk, the state space, the control uk ∈ Gk, the control space, and
the random disturbance wk ∈ Hk, k = 0, 1, . . . , N − 1. The control uk is
constrained by uk ∈ Uk(xk) ⊂ Gk, (k = 0, 1, . . . , N − 1) for given mappings
Uk : Mk → 2Gk . We consider the class of control laws (”policies”) that consist
of a finite sequence of functions π = {µ0, µ1, . . . , µN−1}, where µk : Mk → Gk

and µk(xk) ∈ Uk(xk). Such control laws are called admitted.
The problem is to find an admitted control law π = {µ0, . . . , µN−1} that

for a given initial state x0 minimizes the cost functional

Jπ(x0) = E

[

gN(xN) +
N−1
∑

k=0

gk(xk, µk(xk), wk)

]

(4.6)

xk+1 = hk(xk, µk(xk), wk).
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The functions gN : MN → R, gk : Mk ×Gk ×Hk → R and hk : Mk ×Gk ×
Hk → R are assumed to be given, for k = 0, 1, . . . , N − 1.

Theorem 4.2.1 (Dynamic Programming) Let J∗(x0) be the optimal
value of the cost functional (4.6) in the dynamic programming problem. Then

J∗(x0) = J0(x0),

where the function J0 is given by the last step of the following dynamic pro-
gramming algorithm, which proceeds backward in time from period N − 1 to
period 0:

JN(xN ) = gN(xN)

Jk(xk) = inf
uk∈Uk(xk)

Ewk
[gk(xk, uk, wk) + Jk+1(hk(xk, uk, wk))] (4.7)

k = 0, 1, . . . , N − 1,

where Ewk
is the expectation with respect to the distribution of wk. Further-

more, if u∗k = µ∗
k(xk) minimizes the right-hand side of (4.7) for each xk and

k then the control law π = {µ∗
0, . . . , µ

∗
N−1} is optimal.

The proof can be found in Bagchi [1] or Bertsekas [6]. Note that the
above formulation of dynamic programming optimizes the cost function over
Markov policies π only. Nevertheless taking non-Markov policies into consid-
eration does not lead to the reduction of the cost function in a model with a
Markov underlying process. This fact is proved in Bertsekas and Shreve [7]
for a slightly different cost function, but can be extended to the case of the
cost function defined as above.

We can now state the dynamic program for the optimization problem
(4.3). Our state variable is the pair (S, V ) — the price of the underlying
vector S ∈ Rm and the value of the hedging portfolio V ∈ R. The control
variable is the number of risky assets φ ∈ Rm. The random disturbances are
wk = Rk. And the expectation with respect to the distribution of Rk in (4.7)
is equal to the conditional expectation with respect to Fk. Further on for
the sake of brevity we will write Ek instead of E [·|Fk]. The dynamics of the
state variables are given by

Sk+1 = diag(Rk)Sk

Vk+1 = Vke
r∆tk + (φk)

T
(

diag(Rk) − er∆tkI
)

Sk,

for all k = 0, . . . , N − 1, for a given F0-measurable (S0, V0) ∈ Rm × R. The
control φ is unconstrained. gk = 0 for all k < N and our cost function is
given by

J(S0, V0) = E
[

(Φ(SN ) − VN )2
]
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and the minimization problem is

min
φ0,...,φN−1

J(S0, V0).

We define the following dynamic programming algorithm for the hedging
problem:

JN(S, V ) = (Φ(S) − V )2 (4.8)

Jk(S, V ) = inf
φk

Ek

[

Jk+1

(

diag(Rk)S, V e
r∆tk + φTk (diag(Rk) − er∆tkI)S

)]

,

k = 0, . . . , N − 1.

Then by Theorem 4.2.1 J0(S0, V0) is the minimal expected squared error
for the initial wealth V0 and initial asset values S0. The optimal control
policy φ∗

0(Sk, Vk), . . . , φ
∗
N−1(Sk, Vk) defines the optimal hedging strategy.

4.3 Properties of the Cost Function and the

Recursive Algorithm

Let us denote by Yk : Ω → Rm the following random variable:

Yk = Rk − er∆tk~e,

~e = (1, . . . , 1)T ∈ Rm

then the dynamic program (4.8) is

JN(S, V ) = (Φ(S) − V )2

Jk(S, V ) = inf
φk

Ek

[

Jk+1

(

diag(Rk)S, V e
r∆tk + φTk diag(Yk)S

)]

,

k = 0, . . . , N − 1.

The following proposition states that the cost functions Jk(S, V ), k = 0, . . . , N
are quadratic functions of V . Its proof includes formulae for explicit recursion
for Jk(S, V ), k = 0, . . . , N and the optimal control φ∗

k(S, V ), k = 0, . . . , N−1
for all S ∈ R+ and V ∈ R. Although obtained independently this proposition
repeats the result of [22]. Unfortunately we have not come across this paper
earlier.

Proposition 4.3.1 The cost functions Jk(S, V ), defined in (4.8) are
quadratic functions of V of the following form:

Jk(S, V ) = AkV
2 + Ck(S)V +Dk(S),

for all k = 0, . . . , N , S ∈ Rm, V ∈ R, Ak > 0, Ck : Rm → R and Dk : Rm →
R, where numbers Ak and functions Ck and Dk do not depend on V .
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Proof We prove this proposition by backward induction in k.
1. k = N .

JN = (Φ(S) − V )2 ,

therefore

AN = 1 > 0

CN(S) = −2Φ(S)

DN(S) = Φ2(S).

2. Assume the statement of the proposition is proved for all k + 1, . . . , N .
Let us prove it for k. From (4.8)

Jk(S, V ) = inf
φk

Ek

[

Jk+1

(

diag(Rk)S, V e
r∆tk + φTk diag(Yk)S

)]

.

By the induction assumption Jk+1(S, V ) is quadratic function of V , therefore

Jk(S, V ) = inf
φk

Ek

[

Ak+1

(

V er∆tk + φTk diag(Yk)S
)2

+Ck+1 (diag(Rk)S)
(

V er∆tk + φTk diag(Yk)S
)

(4.9)

+Dk+1 (diag(Rk)S)] ,

taking the expectation inside we get

Jk(S, V ) = inf
φk

{

Ak+1

(

φTkEk

[

diag(Yk)SS
Tdiag(Yk)

]

φk + V 2e2r∆tk

+2V er∆tkφTkEk [diag(Yk)]S
)

+Ek [Ck+1 (diag(Rk)S)]V er∆tk (4.10)

+φTkEk [Ck+1 (diag(Rk)S) diag(Yk)]S

+Ek [Dk+1 (diag(Rk)S)]} ,

which is a quadratic function of V .
In the rest of the proof we derive the explicit recursion for the coefficients

Ak, Ck, Dk, k = 0, . . . , N − 1. And prove that Ak > 0 for all k = 0, . . . , N .
For all S ∈ R+ and V ∈ R, Jk(S, V ) is the minimum of a quadratic function
of φk. Its highest order coefficient Ek

[

diag(Yk)SS
Tdiag(Yk)

]

is the Gramian
matrix in the space of random variables with scalar product defined as

〈X, Y 〉 = Ek [XY ]

for vector diag(Yk)S which coordinates are linearly independent by the model
assumptions. Therefore Ek

[

diag(Yk)SS
Tdiag(Yk)

]

is positive definite and
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hence for all S ∈ R+ and V ∈ R there is a unique optimal φ∗
k(S, V ), solving

(4.10). Due to the quadratic structure of (4.10) φ∗
k is the solution to the

following linear equation:

2Ak+1Ek

[

diag(Yk)SS
Tdiag(Yk)

]

φ∗
k + Ek [Ck+1 (diag(Rk)S) diag(Yk)]S

+2Ak+1V e
r∆tkEk [diag(Yk)]S = 0 (4.11)

Note that

diag(Yk)S = diag(S)Yk (4.12)

hence we can rewrite (4.11) as

2Ak+1diag(S)Ek

[

YkY
T
k

]

diag(S)φ∗
k + diag(S)Ek [Ck+1 (diag(Rk)S)Yk]

+2Ak+1V e
r∆tkdiag(S)Ek [Yk] = 0, (4.13)

If we multiply (4.13) by (diag(S))−1 on the left we get:

2Ak+1Ek

[

YkY
T
k

]

diag(S)φ∗
k + Ek [Ck+1 (diag(Rk)S)Yk]

+ 2Ak+1V e
r∆tkEk [Yk] = 0, (4.14)

therefore for all S ∈ R+ and V ∈ R the optimal φ∗
k(S, V ) satisfies

diag(S)φ∗
k(S, V ) = − 1

2Ak+1

(

Ek

[

YkY
T
k

])−1
(Ek [Ck+1 (diag(Rk)S)Yk]

+2V er∆tkEk [Yk]
)

. (4.15)

Using (4.12) we write (4.10) as

Jk(S, V ) = inf
φk

{

Ak+1

(

φTk diag(S)Ek

[

YkY
T
k

]

diag(S)φk + V 2e2r∆tk

+2V er∆tkφTk diag(S)Ek [Yk]
)

+Ek [Ck+1 (diag(R)S)]V er∆tk (4.16)

+φTk diag(S)Ek [Ck+1 (diag(Rk)S)Yk]

+Ek [Dk+1 (diag(Rk)S)]} .
Substituting (4.15) into (4.16) we find the expression for Jk(S, V ):

Jk(S, V ) = Ak+1V
2e2r∆tk

(

1 −Ek

[

Y T
k

] (

Ek

[

YkY
T
k

])−1
Ek [Yk]

)

+V er∆tkEk

[

Ck+1 (diag(Rk)S)
(

1 − Y T
k

(

Ek

[

YkY
T
k

])−1
Ek [Yk]

)]

+Ek [Dk+1 (diag(Rk)S)]

− 1

4Ak+1

Ek

[

Ck+1 (diag(Rk)S)Y T
k

] (

Ek

[

YkY
T
k

])−1 ×

×Ek [Ck+1 (diag(Rk)S)Yk]
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And therefore we have

Jk(S, V ) = AkV
2 + Ck(S)V +Dk(S)

with

Ak = Ak+1e
2r∆tk

(

1 −Ek

[

Y T
k

] (

Ek

[

YkY
T
k

])−1
Ek [Yk]

)

(4.17)

Ck(S) = er∆tkEk

[

Ck+1 (diag(Rk)S)
(

1 − Y T
k

(

Ek

[

YkY
T
k

])−1
Ek [Yk]

)]

Dk = − 1

4Ak+1
Ek

[

Ck+1 (diag(Rk)S)Y T
k

] (

Ek

[

YkY
T
k

])−1
Ek [Ck+1 (diag(Rk)S)Yk]

+Ek [Dk+1 (diag(Rk)S)] .

The only thing left to prove is that Ak > 0. Consider random vector

Y T
k

(

Ek

[

YkY
T
k

])−1
Ek [Yk] .

Note that P

(

Y T
k

(

Ek

[

YkY
T
k

])−1
Ek [Yk] 6= 1

)

> 0. Otherwise the coordinates

of Yk would be linearly dependent, which contradicts the model assumptions.
Then the following inequality holds

0 < Ek

[

(

1 − Y T
k

(

Ek

[

YkY
T
k

])−1
Ek [Yk]

)2
]

. (4.18)

If we denote

Nk =
(

Ek

[

YkY
T
k

])−1
,

then rewriting the right part of (4.18) we get

0 < Ek

[

1 + Ek

[

Y T
k

]

NkYkY
T
k NkEk [Y ] − 2Y T

k NkEk [Yk]
]

= 1 + Ek

[

Y T
k

]

NkEk [Yk] − 2Ek

[

Y T
k

]

NkEk [Yk]

= 1 − Ek

[

Y T
k

]

NkEk [Yk] .

Therefore

1 − Ek

[

Y T
k

] (

Ek

[

YkY
T
k

])−1
Ek [Yk] > 0. (4.19)

And since by the induction assumption Ak+1 > 0 we conclude that Ak > 0.

Proposition 4.3.1 gives us an explicit recipe for our optimization proce-
dure. Start at tN with

AN = 1

CN(S) = −2Φ(S) (4.20)

DN(S) = Φ2(S)

and then step by step calculate optimal weights φ∗
k using (4.15) and coeffi-

cients Ak, Ck(S) and Dk(S) using equations (4.17).
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4.4 The Optimal Initial Capital

In section 4.3 we have solved the minimization problem simultaneously
for all values of the initial wealth. This section is focused on the properties
of the optimal initial capital e.g. V ∗

0 solving

J0(S, V
∗
0 (S)) = min

V
J0(S, V ). (4.21)

First we show that under the assumption of independent increments the den-
sity of the variance-optimal measure (see definition 3.2.2) can be presented as
a product certain functions, which can be interpreted as one-step densities.

As a straightforward corollary of proposition 4.3.1 we get an explicit form
for the optimal initial capital.

Proposition 4.4.1 The solution of the problem (4.21) is given by

V ∗
0 = −C0(S)

2A0
,

with A0 and C0(S) defined in (4.20) and (4.17).

Definition 4.4.1 For each N we define a signed measure QN by spec-
ifying its Radon-Nikodym derivative with respect to the real-world measure
P:

dQN

dP
:= mt1|t0mt2|t1 . . .mtN |tN−1

,

mtk+1|tk =
1 − Y T

k

(

Ek

[

YkY
T
k

])−1
Ek [Yk]

1 −Ek [Y T
k ] (Ek [YkY

T
k ])

−1
Ek [Yk]

, (4.22)

(by (4.19) the denominator is not equal to 0.)

Measure QN is defined in [47] where it is used for the computation of
the optimal initial capital. Our setting allows us to compute V ∗

0 directly
once C0(S) is known. Nevertheless below we present the proofs that QN is
the variance-optimal measure of Schweizer [45] for the case of independent
returns and that V ∗

0 defined in (4.21) is equal to the expectation of the payoff
Φ with respect to the measure QN . In the following section we prove that
the density of QN converges to the density of the risk-neutral measure in L2

as the distance between hedging dates goes to 0.

Proposition 4.4.2 Under the assumption of independent returns the mea-
sure QN is the m-dimensional version of the variance-optimal measure of
Schweizer [45] (see definition 3.2.2 of Chapter 3).
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Proof By a backward induction in k we prove that for all k = 1, . . . , N
the following two equalities hold:

1 − βk∆Sk−1

E [1 − βk∆Sk−1]
= mtk |tk−1

(4.23)

and

Ek−1 [1 − βk∆Sk−1]

Ek−1 [1 − βk∆Sk−1]
2 = 1. (4.24)

1.k = N .

βN =
EN−1 [∆SN−1]

EN−1

[

∆S2
N−1

] =
EN−1 [RN−1 − 1]

SN−1EN−1 [RN−1 − 1]2
.

Remember that Schweizer assumes discounted asset prices, so

Rk − 1 = Yk, for all k = 0, . . . , N − 1.

and

βN =
EN−1 [YN−1]

SN−1EN−1 [YN−1]
2 .

Then

1 − βN∆SN−1 = 1 − YN−1EN−1 [YN−1]

EN−1

[

Y 2
N−1

] ,

and

1 − βN∆SN−1

EN−1 [1 − βN∆SN−1]
=

EN−1

[

Y 2
N−1

]

− YN−1EN−1 [YN−1]

EN−1

[

Y 2
N−1

]

− (EN−1 [YN−1])
2 = mtN |tN−1

,

which proves (4.23). Now consider

EN−1 [1 − βN∆SN−1]

EN−1 [1 − βN∆SN−1]
2 =

1 − (EN−1[YN−1])2

EN−1[Y 2
N−1]

1 − 2 (EN−1[YN−1])2

EN−1[Y 2
N−1]

+
EN−1[Y 2

N−1](EN−1[YN−1])2

(EN−1[Y 2
N−1])

2

=
EN−1

[

Y 2
N−1

] (

EN−1

[

Y 2
N−1

]

− (EN−1 [YN−1])
2)

EN−1

[

Y 2
N−1

] (

EN−1

[

Y 2
N−1

]

− (EN−1 [YN−1])
2)

= 1,



Mean-Variance Hedging for Black-Scholes Dynamics 51

which proves (4.24).
2. Assume now that we have proved (4.23) and (4.24) for k + 1, . . . , N .

Let us prove it for k.

βk =

Ek−1

[

∆Sk−1

N
∏

j=k+1

(1 − βj∆Sj−1)

]

Ek−1

[

∆S2
k−1

N
∏

j=k+1

(1 − βj∆Sj−1)
2

]

By the induction assumption and because returns Rj , j = 0, . . . , N − 1 are
independent all βj , j = k + 1, . . . , N are independent and they all are also
independent of Rk−1, therefore

βk =

Ek−1 [∆Sk−1]
N
∏

j=k+1

Ek−1 [1 − βj∆Sj−1]

Ek−1

[

∆S2
k−1

]

N
∏

j=k+1

Ek−1 [1 − βj∆Sj−1]
2

.

Then by (4.24) of the induction assumption

βk =
Ek−1 [∆Sk−1]

Ek−1

[

∆S2
k−1

] ,

and the rest of the proof is similar to the case k = N .

As a corollary of proposition 4.4.1 we directly prove the result of Schweizer
[45] that the optimal initial capital is the expectation under the variance-
optimal measure.

Theorem 4.4.3 For every S0 ∈ Rm the optimal initial capital V ∗
0 (S0) is

the discounted expectation of the payoff at maturity under the signed measure
QN :

V ∗
0 (S0) = e−rTEQN [Φ(SN )] .

Proof (of Theorem 4.4.3) Let us denote

Ṽk(S) := −Ck(S)

2Ak
mtk := mtk+1|tk . . .mtN |tN−1

, k = 0, . . . , N − 1

mtN := 1
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and prove for all k that

Ṽk(Sk) = e−r(T−tk)EP
k [mtkΦ(SN )] (4.25)

by backward induction in k. This will prove the statement of the theorem,
because Ṽ0 = V ∗

0 .
1. k = N :

ṼN(SN) = −CN (SN)

2AN
= Φ(SN ) = EP

N [mtN Φ(SN )] .

2. Suppose the statement has been proved for all i = k + 1, . . . , n. Now
we will prove it for i = k. Using (4.17) we get:

Ṽk(Sk) = −Ck(Sk)
2Ak

= −e−r∆tkEP
k





Ck+1(diag(Rk)Sk)
(

1 − Y T
k

(

Ek

[

YkY
T
k

])−1
Ek [Yk]

)

2Ak+1

(

1 −Ek [Yk]
T (Ek [YkY T

k ])
−1

Ek [Yk]
)





= e−r∆tkEP
k

[

Ṽk+1(diag(Rk)Sk)mtk+1|tk

]

(4.26)

and by the induction assumption

Ṽk+1(Sk+1) = e−r(T−tk+1)EP
k+1

[

mtk+1
Φ(SN )

]

. (4.27)

So if we substitute (4.27) in (4.26) we find

Ṽk(Sk) = e−r(T−tk)EP
k

[

EP
k+1

[

mtk+1
Φ(SN)

]

mtk+1|tk
]

= e−r(T−tk)EP
k [mtkΦ(SN)] .

This proves (4.25) and therefore

V ∗
0 (S0) = Ṽ0(S0) = e−r(T−t0)EP

[

dQN

dP
Φ(SN )

]

= e−rTEQN [Φ(SN )] ,

which is the statement we had to prove.

4.5 Continuous Dynamics

In this section we show that if asset returns are independent the L2 limit
of the Radon-Nikodym derivative of the variance-optimal measure from def-
inition 4.4.1 is the Radon-Nikodym derivative of the risk-neutral measure of
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the complete limit model and that the optimal initial capital converges to
the Black-Scholes price as the number of the hedging dates goes to infinity.
From now on we assume that the number of underlying assets is one.

Consider the generalized Black-Scholes model with the underlying asset
price process S̃ and deterministic drift and volatility functions depending
only on time. Note that if they also depend on the underlying asset price the
returns fail to be independent. Indeed, take Rk and Rk+1 for some k. Then

E [RkRk+1] = E

[

Sk+2

Sk

]

,

which is not the same as

E [Rk]E [Rk+1] = E

[

Sk+1

Sk

]

E

[

Sk+2

Sk+1

]

in a general model. Define

dS̃(t) = µ(t)S̃(t)dt+ σ(t)S̃(t)dW (t), t ∈ [0, T ] (4.28)

S̃(0) = S̃0,

dB(t) = rB(t)dt, (4.29)

B(0) = B0

We denote the filtration of the continuous model generated by the price
process S̃ by {F̃t}0≤t≤T . We assume r ∈ R+ to be constant for the sake
of simplicity, the model might easily be extended to the case where r is an
arbitrary function of time. µ : [0, T ] → R and σ : [0, T ] → R are given
continuous functions satisfying the conditions (2.4)-(2.5).

We define the discrete model for the time set T = {t0 = 0, . . . , tN = T}
as

Sk = S̃(tk), k = 0, . . . , N (4.30)

Rk =
Sk+1

Sk
, k = 0, . . . , N − 1. (4.31)

Note that there is an analytical solution for S̃(t), t ∈ [0, T ]:

S̃(t) = S̃0 exp







t
∫

0

(

µ(u) − 1

2
σ2(u)

)

du+

t
∫

0

σ(u)dW (u)







,

and thus

Rk = exp







tk+1
∫

tk

(

µ(u) − 1

2
σ2(u)

)

du+

tk+1
∫

tk

σ(u)dW (u)







(4.32)
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for all k = 0, . . . , N − 1 and therefore the variables Rk are independent.
Moreover the conditional and unconditional expectations are the same:

E [Rk] = Ek [Rk] = exp







tk+1
∫

tk

µ(u)du







, (4.33)

E
[

R2
k

]

= Ek

[

R2
k

]

= exp







tk+1
∫

tk

(

2µ(u) + σ2(u)
)

du







. (4.34)

In the rest of this section we are going to prove that the Radon-Nikodym
derivatives of the variance-optimal measures QN of the discrete model (4.30)-
(4.31) with respect to the real-world measure P converge in L2 to the Radon-
Nikodym derivative of the risk-neutral measure Q of the continuous model
(4.28)-(4.29) with respect to the real-world measure and subsequently that
the optimal initial capital V ∗

0 (S) converges to the no-arbitrage price F (0, S)
in the model (4.28)-(4.29) as the distance between the hedging dates goes to
0.

Theorem 4.5.1 Assume the generalized Black-Scholes model (4.28)-(4.29)
with constant interest rate r. Suppose µ(·) and σ(·) are continuous on [0, T ],
µ(·) is continuously differentiable on [0, T ] and σ(t) > c for some c > 0 and
for all t ∈ [0, T ]. Then the Radon-Nikodym derivative of the variance-optimal
measure of the discrete model (4.30)-(4.31) with respect to the real-world one
converges in L2 to the Radon-Nikodym derivative of the risk-neutral measure
in model (4.28)-(4.29) as the maximal distance between hedging dates goes
to 0:

dQN

dP
L2

→ dQ

dP
, max

k=0,...,N−1
∆tk → 0.

Proof We have to prove that

N−1
∏

k=0

mN
tk+1|tk

L2

→ exp







−
T
∫

0

λ(u)dW (u)− 1

2

T
∫

0

λ2(u)du







, max
k=0,...,N−1

∆tk → 0,

where mN
tk+1|tk

is the one-dimensional version of (4.22):

mN
tk+1|tk

=
1 − YkEk [Yk] /Ek [Y 2

k ]

1 − (Ek [Yk])
2 /Ek [Y 2

k ]
=

Ek [Y 2
k ] − YkEk [Yk]

Ek [Y 2
k ] − (Ek [Yk])

2 , (4.35)

Yk = Rk − er∆tk ,
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k = 0, . . . , N−1, and where λ(t) is the market price of risk in the continuous
model (4.28)-(4.29):

λ(t) =
µ(t) − r

σ(t)
, t ∈ [0, T ].

In other words we have to prove that
∥

∥

∥

∥

∥

∥

N−1
∏

k=0

mN
tk+1|tk

− exp







−
T
∫

0

λ(u)dW (u)− 1

2

T
∫

0

λ2(u)du







∥

∥

∥

∥

∥

∥

L2

→ 0

if max
k=0,...,N−1

∆tk → 0, which is equivalent to

E











N−1
∏

k=0

mN
tk+1|tk

− exp







−
T
∫

0

λ(u)dW (u)− 1

2

T
∫

0

λ2(u)du











2





→ 0,

if max
k=0,...,N−1

∆tk → 0.

Let us fix N and rewrite the expression for this expectation.

E











N−1
∏

k=0

mN
tk+1|tk

− exp







−
T
∫

0

λ(u)dW (u)− 1

2

T
∫

0

λ2(u)du











2






= E





(

N−1
∏

k=0

mN
tk+1|tk

)2


+ E



exp







−2

T
∫

0

λ(u)dW (u) −
T
∫

0

λ2(u)du











−2E





N−1
∏

k=0

mN
tk+1|tk

exp







−
T
∫

0

λ(u)dW (u)− 1

2

T
∫

0

λ2(u)du











= E

[

(

dQN

dP

)2
]

− 2E

[

dQN

dP

dQ

dP

]

+ E

[

(

dQ

dP

)2
]

.

We calculate each of the terms separately. The first one is

E

[

(

dQN

dP

)2
]

= E





(

N−1
∏

k=0

mN
tk+1|tk

)2


 = E





N−1
∏

k=0

(

Ek [Y 2
k ] − YkEk [Yk]

Ek [Y 2
k ] − (Ek [Yk])

2

)2


 .

Since all Rk, k = 0, . . . , N − 1 are independent, Yk, k = 0, . . . , N − 1 are also
independent and so are Ek [Yk] , k = 0, . . . , N − 1 and therefore all mN

tk+1|tk
,
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k = 0, . . . , N − 1 are independent and the expectation of the product is thus
the product of expectations:

E

[

(

dQN

dP

)2
]

=

N−1
∏

k=0

E





(

Ek [Y 2
k ] − YkEk [Yk]

Ek [Y 2
k ] − (Ek [Yk])

2

)2


 .

By (4.33) and (4.34) we write that

Ek [Yk] = E [Yk] = exp







tk+1
∫

tk

µ(u)du







− er∆tk (4.36)

Ek

[

Y 2
k

]

= E
[

Y 2
k

]

= exp







tk+1
∫

tk

(

2µ(u) + σ2(u)
)

du







(4.37)

−2er∆tk exp







tk+1
∫

tk

µ(u)du







+ e2r∆tk .

Then for all k = 0, . . . , N − 1

E





(

Ek [Y 2
k ] − YkEk [Yk]

Ek [Y 2
k ] − (Ek [Yk])

2

)2


 = E





(

E [Y 2
k ] − YkE [Yk]

E [Y 2
k ] − (E [Yk])

2

)2




=
E
[

(E [Y 2
k ])

2 − 2YkE [Yk]E [Y 2
k ] + (YkE [Yk])

2
]

(

E [Y 2
k ] − (E [Yk])

2)2

=
E [Y 2

k ]

E [Y 2
k ] − (E [Yk])

2

= 1 +
(E [Yk])

2

E [Y 2
k ] − (E [Yk])

2 .

Using (4.36) and (4.37) we write that for all k = 0, . . . , N − 1

1 +
(E [Yk])

2

E [Y 2
k ] − (E [Yk])

2 = 1 +



e

tk+1
∫

tk

µ(u)du

− er∆tk





2

e

tk+1
∫

tk

(2µ(u)+σ2(u))du

− e

tk+1
∫

tk

2µ(u)du
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and therefore the first term is

E

[

(

dQN

dP

)2
]

=

N−1
∏

k=0



































1 +



e

tk+1
∫

tk

µ(u)du

− er∆tk





2

e

tk+1
∫

tk

(2µ(u)+σ2(u))du

− e

tk+1
∫

tk

2µ(u)du



































.

The cross-term can be rewritten as

E

[

dQN

dP

dQ

dP

]

= E





N−1
∏

k=0

mN
tk+1|tk

exp







−
T
∫

0

λ(u)dW (u)− 1

2

T
∫

0

λ2(u)du











= E





N−1
∏

k=0







mN
tk+1|tk

exp







−
tk+1
∫

tk

λ(u)dW (u)− 1

2

tk+1
∫

tk

λ2(u)du















 .

Since exp

{

−
T
∫

0

λ(u)dW (u)− 1
2

T
∫

0

λ2(u)du

}

is the Radon-Nikodym deriva-

tive of the risk-neutral measure Q with respect to the real-world measure P

we may write

E

[

dQN

dP

dQ

dP

]

= EQ

[

dQN

dP

]

= EQ

[

N−1
∏

k=0

mN
tk+1|tk

]

and because variables mN
tk+1|tk

, k = 0, . . . , N − 1 are independent we may

interchange the order of the product and the expectation:

E

[

dQN

dP

dQ

dP

]

=
N−1
∏

k=0

EQ
[

mN
tk+1|tk

]

.

For all k = 0, . . . , N − 1

EQ
[

mN
tk+1|tk

]

= EQ

[

E [Y 2
k ] − YkE [Yk]

E [Y 2
k ] − (E [Yk])

2

]

=
E [Y 2

k ] −EQ [Yk]E [Yk]

E [Y 2
k ] − (E [Yk])

2 .

Under the risk-neutral measure the expected return on the underlying asset
is equal to the bank return:

EQ
k [Rk] = er∆tk , k = 0, . . . , N − 1,
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hence

EQ
k [Yk] = 0, k = 0, . . . , N − 1,

therefore

EQ
k

[

mN
tk+1|tk

]

=
E [Y 2

k ]

E [Y 2
k ] − (E [Yk])

2

= 1 +
(E [Yk])

2

E [Y 2
k ] − (E [Yk])

2 .

Thus the second term is

−2E

[

dQN

dP

dQ

dP

]

= −2

N−1
∏

k=0



































1 +



e

tk+1
∫

tk

µ(u)du

− er∆tk





2

e

tk+1
∫

tk

(2µ(u)+σ2(u))du

− e

tk+1
∫

tk

2µ(u)du



































.

Finally, the last term

E

[

(

dQ

dP

)2
]

= E



exp







−2

T
∫

0

λ(u)dW (u)−
T
∫

0

λ2(u)du











= exp







T
∫

0

λ2(u)du







.

Taking all terms back together we find that

∥

∥

∥

∥

dQN

dP
− dQ

dP

∥

∥

∥

∥

2

L2

= e

T
∫

0

λ2(u)du
−

N−1
∏

k=0



































1 +



e

tk+1
∫

tk

µ(u)du

− er∆tk





2

e

tk+1
∫

tk

(2µ(u)+σ2(u))du

− e

tk+1
∫

tk

2µ(u)du



































.

Since µ and σ are continuous functions we may use the mean-value theorem
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(see [19]) to state that for all k = 0, . . . , N − 1

tk+1
∫

tk

µ(u)du = µ(ξk)∆tk,

tk+1
∫

tk

σ2(u)du = σ2(ζk)∆tk.

for some points ξk, ζk ∈ [tk, tk+1]. Then for each k = 0, . . . , N − 1



e

tk+1
∫

tk

µ(u)du

− er∆tk





2

e

tk+1
∫

tk

(2µ(u)+σ2(u))du

− e

tk+1
∫

tk

2µ(u)du

=

(

eµ(ξk)∆tk − er∆tk
)2

e(2µ(ξk)+σ2(ζk))∆tk − e2µ(ξk)∆tk
.

Expanding exponents around zero we write for all k = 0, . . . , N − 1 and
∆tk → 0

(

eµ(ξk)∆tk − er∆tk
)2

e(2µ(ξk)+σ2(ζk))∆tk − e2µ(ξk)∆tk
=

(µ(ξk)∆tk − r∆tk + o(∆tk))
2

σ2(ζk)∆tk + o(∆tk)

=
(µ(ξk) − r)2

σ2(ζk)
∆tk + o(∆tk).

So

N−1
∏

k=0



































1 +



e

tk+1
∫

tk

µ(u)du

− er∆tk





2

e

tk+1
∫

tk

(2µ(u)+σ2(u))du

− e

tk+1
∫

tk

2µ(u)du



































=

N−1
∏

k=0

{

1 +
(µ(ξk) − r)2

σ2(ζk)
∆tk + o(∆tk)

}

= exp

{

N−1
∑

k=0

ln

(

1 +
(µ(ξk) − r)2

σ2(ζk)
∆tk + o(∆tk)

)}

.

If µ(t) is continuously differentiable, then for all k = 0, . . . , N − 1

µ(ξk) = µ(ζk) + µ′(ζk)(ξk − ζk) + o(|ζk − ξk|),
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so for all k = 0, . . . , N − 1

(µ(ξk) − r)2

σ2(ζk)
∆tk + o(∆tk) =

(µ(ζk) − r)2

σ2(ζk)
∆tk + o(∆tk).

Expanding the logarithm around zero we get

exp

{

N−1
∑

k=0

ln

(

1 +
(µ(ξk) − r)2

σ2(ζk)
∆tk + o(∆tk)

)}

= exp

{

N−1
∑

k=0

(

(µ(ζk) − r)2

σ2(ζk)
∆tk + o(∆tk)

)}

= exp

{

N−1
∑

k=0

(

λ2(ζk)∆tk + o(∆tk)
)

}

→ exp







T
∫

0

λ2(u)du







,

if max
k=0,...,N−1

∆tk → 0. Therefore

∥

∥

∥

∥

dQN

dP
− dQ

dP

∥

∥

∥

∥

L2

→ 0, max
k=0,...,N−1

∆tk → 0.

Corollary 4.5.2 Under the assumptions of the theorem 4.5.1 and if Φ
is bounded then the optimal initial capital V ∗

0 defined in (4.21) converges to
the no-arbitrage price V of the contingent claim Φ(S̃(T )) in the generalized
Black-Scholes model (4.28)-(4.29) as the time between hedges goes to zero.

Proof By theorem 4.4.3 the optimal initial capital is the expectation of
the final payoff under the variance optimal measure QN :

(V ∗
0 )N = EQN

[Φ(ST )] .

By theorem 4.5.1 the Radon-Nikodym derivatives dQN

dP
converge to the Radon-

Nikodym derivative dQ
dP

in L2 if N goes to infinity. Therefore

dQN

dP
→ dQ

dP
, N → ∞ in distribution,

so

(V ∗
0 )N = EQN

[Φ(ST )] → EQ [Φ(ST )] = V, N → ∞.
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Model with Cost of Risk

In this chapter we present a new approach to the optimal hedging prob-
lem. Our model maximizes the expected profit of the trader while avoiding
the use of utility functions. In a standard model (e.g. such as defined in
chapter 4) the maximization of the expected portfolio value would lead to
unbounded strategies: since the expected return on the risky asset is bigger
than the risk-free rate, borrowing more money from the bank account B and
investing it in a larger number of assets S will result in a higher positive
expected profit. Thus the optimal strategy is buying an infinite number of
stocks, which results in an infinite expected profit. It also results in an infi-
nite risk though, which the strategy does not take care of. A utility function
is one of the ways to take the risk into account. As mentioned for example in
[11], despite thorough research made in the field of utility maximization and
the fact that it is well-developed from a theoretical point of view, the utility
approach is rarely used in practice mostly due to the difficulty of defining
the utility function of a trader. Therefore we choose a different way. In
our model the risk is managed by means of an extra bank account with an
interest smaller than the risk-free interest rate, which should be thought of
as a capital reserve.

Capital reserve is the amount of money a bank has to put aside to cover an
eventual loss. This amount is regulated by the Basel Committee on Banking
Supervision and its Basel Capital Accords. The first of the Basel Accords,
also known as Basel I was mainly focused on the credit risk. According to
it the banks were required to reserve 8% of their risk-weighted assets. The
full version of Basel I can be found in [3]. Basel II, the second Basel Capital
Accord, (see [4] for the full version) considers not only the credit risk but
also operational and market risks. The latter — the risk we are interested
in for our research — is supposed to be valuated using VaR — the value at
risk technique. VaR is the maximum amount at risk to be lost over a certain
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period on a certain confidence level. For more details we refer the reader
to [27]. Although this technique is widely applied, it has been criticized for
its strong dependence on the estimation of small probabilities [38] and weak
perfomance in the event of market crashes [26].

Modeling the capital reserve as an extra bank account with an interest
rate smaller than the risk-free can be seen as a slightly stylized reflection
of what is happening in the real life. In general, every bank (or a trading
company) has a certain profit target. At the same time, it has to remain
solvent and thus the amount of capital it can put at risk is limited. This
defines a target rate of return for the bank’s investments. When a trader
takes on a risky position, he ties up some of the bank’s capital: the bank
now has to put some money aside in case the trader makes a loss and the
bank has to pay to the counterparty. Since this money has to be readily
available, it is kept in a bank account or in some very liquid instruments
with yields that can not possibly match the bank’s target rate of return. So
from the bank’s point of view this is not a profitable enough investment.
For trader’s risk to be worth it, the trader has to compensate all the ”lost”
return associated with the solvency reserve that has to be kept by the bank
in order to mitigate possible losses of the trader. Hence, from the trader’s
point of view every euro worth of risk is generating an interest smaller than
the risk-free rate.

The extra bank account of our model is not an extra traded asset in
the market, because at any time it has to contain a fixed amount of money
depending on the trader’s portfolio risk. The mechanism of the risk man-
agement is simple. The bigger the risk of the portfolio, the more the trader
should keep in the reserve bank account, the more he or she loses because of
the lower interest rate.

We assume a finite discrete time set and a binomial model for the un-
derlying asset price process. The discrete time of the model reflects the
non-continuous nature of the trading in the real life. The simplicity of the
binomial structure is also a desirable feature for the traders. Nevertheless
we see the continuous-time limit as a possible extension. The risk-free rate
is assumed to be constant and so is the interest rate on the reserve bank
account. We only consider portfolios of European options here. We model
the risk of the portfolio by a function which depends on the market state and
the weights of the portfolio, and we maximize the expected final value of the
portfolio by optimizing the number of underlying assets with the dynamic
programming technique.

Despite the absence of utility functions we may then introduce an indif-
ference price as the amount of money, which makes the optimally behaving
trader indifferent between having a certain option in his or her portfolio or not
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having it. We introduce relative prices with respect to an existing portfolio:
we define buying and selling indifference prices that depend on the current
trader’s portfolio. Assuming a special form of the risk function based on the
portfolio Greeks — the derivatives of the Black-Scholes price of the portfolio
with respect to its parameters — we are able to get analytical solutions for
the indifference prices. These indifference prices show a difference between
bid and ask prices, they depend on the trader’s existing portfolio and pro-
duce volatility smiles, which may be fitted to the market by changing the
parameters of the risk function.

5.1 The Model

In this section we define the market model and the set of admissible
trading strategies. We consider the discrete time model (4.1) with time set
T = {0 = t0 < . . . < tN = T} that we defined in chapter 4 with an additional
riskless asset Z:

Sk+1 = SkRk, k = 0, . . . , N − 1,

Bk = ertk , k = 0, . . . , N,

Zk = er̃tk , k = 0, . . . , N,

0 ≤ r̃ < r.

with S0 > 0, R : Ω × T → R and Fk = σ(R0, . . . , Rk−1). The third asset Z
is not traded, and therefore, the obvious arbitrage opportunity of borrowing
from Z and investing in B is not possible.

We assume binomial dynamics for the underlying asset S, which is de-
scribed by a special form of random variables Rk:

Rk =

{

uk with probability pk
dk with probability 1 − pk

, (5.1)

where

uk = exp

{

(µ− 1

2
σ2)∆tk + σ

√

∆tk

}

dk = exp

{

(µ− 1

2
σ2)∆tk − σ

√

∆tk

}

(5.2)

pk =
1

2

for all k = 0, . . . , N − 1 and µ > r.
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The trader holds a portfolio of n European options with maturities Ti ∈
T \ {t0}, i = 1, . . . , n and payoffs Φi : R+ → R, i = 1, . . . , n. Their total
payoff is a function Φ : T × R+ → R

Φ(t, S) =

n
∑

i=1

Φi(S)δTi
(t),

where

δTi
(t) =

{

1, t = Ti
0, otherwise

.

we denote the payoff at time tk as Φk (unlike the number of an option, which
is denoted by a superscript, the time point is denoted by a subscript):

Φk(S) = Φ(tk, S), k = 1, . . . , N

The trading strategies are adapted vector-valued stochastic processes
π = (hS, hB, hZ) with π : Ω × T → R3, where hS is the number of stocks,
hB is the number of bonds in the bank account B and hZ is the number of
bonds in the capital reserve account Z. All option payoffs received or paid
are invested in or withdrawn from the bank account B. In other words at
time ti we buy Φi(Si)

Bi
bonds for the price Bi when Φi(Si) > 0 or sell them

when Φi(Si) < 0. At time tk > ti this investment is worth Φi(Si)
Bk

Bi
. If we

denote the value process of the portfolio by V , then the value of the hedging
portfolio at time tk is

V π
k = hSkSk + hBk Bk + hZk Zk +

k
∑

i=1

Φi(Si)
Bk

Bi

. (5.3)

Definition 5.1.1 The set of admitted trading strategies A consists of all
adapted strategies π satisfying two conditions:

1. π is self-financing when the cash inflow from the expiring options’ pay-
offs are included:

∆V π
k = hSk∆Sk + hBk ∆Bk + hZk∆Zk +

k
∑

i=1

Φi(Si)
∆Bk

Bi

+Φk+1(Sk+1). (5.4)

2. The size of the prescribed capital reserve is a fixed function of the port-
folio weights and the market prices:

hZk = fk(h
S
k , h

B
k , Sk, Bk, Zk). (5.5)

The function fk is called the risk function.
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The goal of the trader is to maximize the expectation of his or her final
position over all admitted strategies, for given initial wealth V0:

max
π∈A

E [V π
T ] .

In section 5.1.2 we specify functions fk in such a way that the dependence
on various variables comes from a functional dependence on the payoff Φ, so
that the optimal strategy depends on the portfolio of options, which is not
the case otherwise.

5.1.1 The Optimization Problem Setup

The state variable for our problem is the pair (S, V ) ∈ R+ × R, where S
is the price of the underlying asset and V is the total value of the hedging
portfolio. We define the reward functional as

Jπ = E [V π
T ]

and we maximize it over all admitted strategies:

max
π∈A

Jπ.

From now on, for the sake of easier notation, we will omit the superscripts π
and write Vk instead of V π

k .
The dynamics of S are given by the equation

Sk+1 = SkRk, k = 0, . . . , N − 1.

The dynamics for V follow from the conditions on admitted strategies (5.4)
and (5.5). Consider an arbitrary k = 0, . . . , N − 1. From the first condition
we have:

∆Vk = hSkSk
∆Sk
Sk

+

(

hBk Bk +
k
∑

i=1

Φi(Si)
Bk

Bi

)

∆Bk

Bk

+ hZk Zk
∆Zk
Zk

+ Φk+1(SkRk)

And from the second one, the amount of money on the reserve bank account
hZk is determined by the risk function fk:

∆Vk = hSkSk
∆Sk
Sk

+

(

hBk Bk +
k
∑

i=1

Φi(Si)
Bk

Bi

)

∆Bk

Bk

+fk(h
S
k , h

B
k , Sk, Bk, Zk)Zk

∆Zk
Zk

+ Φk+1(SkRk).
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By the definition of the portfolio value (5.3)

hBk Bk +

k
∑

i=1

Φi(Si)
Bk

Bi

= Vk − hSkSk − hZk Zk, (5.6)

and

∆Bk

Bk

= er∆tk − 1,

∆Sk
Sk

= Rk − 1,

so

Vk+1 = Vke
r∆tk + hSkSk

(

Rk − er∆tk
)

+ fk(h
S
k , h

B
k , Sk, Bk, Zk)Ek + Φk+1(SkRk),

where

Ek = er̃tk
(

er̃∆tk − er∆tk
)

≤ 0, k = 0, . . . , N − 1.

Since Bk and Zk are deterministic and hBk follows from Vk and the self-
financing condition (5.4) we may write

fk(h
S
k , h

B
k , Sk, Bk, Zk) = ρk(Sk, Vk, h

S
k ).

Note that for any adapted process hS there exist (by (5.5) and (5.6)) unique
adapted processes hB and hZ such that

(

hS, hB, hZ
)

is an admitted strategy.
Therefore the optimization problem may be written as

max
hS−adapted

E [VN ] , (5.7)

(Sk+1, Vk+1) =
(

SkRk, Vke
r∆tk + hSkSk

(

Rk − er∆tk
)

+ ρk(Sk, Vk, h
S
k )Ek

+Φk+1(SkRk)) (5.8)

So unlike Basak and Shapiro [2] case our optimization problem is uncon-
strained as the risk management term is embedded in the dynamics of the
portfolio value.

Following the line of utility function theory as in Chapter 3 we introduce
the notion of indifference prices:

Definition 5.1.2 Let JX be the solution to the problem (5.7) for the
option portfolio X, then the number pb

pb = e−rT
(

JΦ+Ψ − JΨ
)
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is called the indifference buyer’s price of portfolio Φ in the presence of port-
folio Ψ, the number ps

ps = e−rT
(

JΨ − JΨ−Φ
)

is called the indifference seller’s price of portfolio Φ in the presence of port-
folio Ψ and the number pm

pm =
ps + pb

2

is called the indifference mid price of portfolio Φ in the presence of portfolio
Ψ. We will use the following notations for these prices:

{Φ}b{Ψ} = pb,

{Φ}s{Ψ} = ps,

{Φ}m{Ψ} = pm.

In other words the indifference price of Φ in presence of Ψ is the price that
an optimally hedging trader who currently holds Ψ will quote for selling or
buying the portfolio Φ. For example if a trader is asked to sell a portfolio Φ
he or she will compare the expected profit he or she may get from his or her
current position Ψ, and that is JΨ, with the expected profit he or she may
get from the same position but without Φ, and that is JΨ−Φ, and will ask
for the price which makes him or her indifferent between those two, which is
the discounted difference:

e−rT
(

JΨ − JΨ−Φ
)

.

If prices are defined in this way they do not only show a difference between
the bid and the ask prices but also depend on the trader’s book and allow
the trader to quote competitive prices.

Here we defined the indifference prices at time zero. We may also define
selling, buying and mid indifference prices {Φ}s{Ψ},k, {Φ}b{Ψ},k, {Φ}m{Ψ},k at

any time 0 < tk ≤ T in the similar way, if JΦ,k is the solution to the problem
(5.7) for option portfolio Φ and time set Tk = {tk, . . . , tN}:

{Φ}s{Ψ},k = e−r(T−tk)
(

JΨ,k − JΨ−Φ,k
)

,

{Φ}b{Ψ},k = e−r(T−tk)
(

JΦ+Ψ,k − JΨ,k
)

,

{Φ}m{Ψ},k =
{Φ}s{Ψ},k + {Φ}b{Ψ},k

2
.
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5.1.2 The Risk Measure

Our choice for the risk measures ρk is dictated by the following consid-
erations. First of all we would like our risk function to be expressed in
terms of observable market parameters which are immediately recognizable
by traders such as option prices’ partial derivatives with respect to a rele-
vant model and state parameters (the so called Greeks). Let us denote by
Πi,Φi

k (S, σ) the Black-Scholes price at time tk of the summed payoff Φi(Si) at
time ti ≥ tk:

Πi,Φi

k (S, σ) = e−r(ti−tk)EQ [Φi(Si)|Sk = S] ,

where Q is the risk-neutral measure of the Black-Scholes model with volatility
σ. We denote by Bini,Φi

k (S) the binomial price at time tk of the summed payoff
Φi(Si) at time ti ≥ tk:

Bini,Φi

k (S) = e−r(ti−tk)EQ̂ [Φi(Si)|Sk = S] ,

k = 0, . . . , N − 1, i = k + 1, . . . , N , where Q̂ is the risk-neutral measure of
the binomial model with probabilities

Q̂ (Sk+1 = ukSk) = quk =
er∆tk − dk
uk − dk

, (5.9)

Q̂ (Sk+1 = dkSk) = qdk =
uk − er∆tk

uk − dk
, (5.10)

with uk and dk defined as in (5.2). At the time tk we define Delta, Vega,
Vanna and Volga of the payoff at time ti ≥ tk, i.e. of Φi(Si), as

∆̂i
k =

Bini,Φi

k+1(Skuk) − Bini,Φi

k+1(Skdk)

Sk(uk − dk)
, (5.11)

V ik =
∂Πi,Φi

k

∂σ
(Sk, σ),

vannaik =
∂2Πi,Φi

k

∂S∂σ
(Sk, σ),

volgaik =
∂2Πi,Φi

k

∂σ2
(Sk, σ),

k = 0, . . . , N−1, i > k. Note, that we do not define Delta in the usual way as
the derivative of the Black-Scholes price with respect to the underlying price
process ∂Πi

∂S
, but as its binomial equivalent. Pelsser and Vorst [37] show that

using the binomial Delta is more accurate than its continuous counterpart.
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Further on we will see that binomial Deltas make sure that the optimal
hedging strategy is a corrected binomial rather than Black-Scholes hedge,
which in turn provides transparent analytical formulae for the indifference
prices. Since the trader is allowed to hedge only with the underlying asset,
he or she can only (partially) hedge Delta of his portfolio. The volatility risk
can be secured by the reserve bank account but not hedging, therefore we
would like to include not only the linear sensitivity of the price to volatility
Vega but also the second-order terms Vanna and Volga.

Second, we want our solutions to be bounded. If for some k = 0, . . . , N−1
the risk function ρk(S, V, h

S) is linear in the third parameter, then E [VN ] is a
linear function of hSk (see the dynamics of V in (5.7)). Then the optimal value
of hSk for the maximization of E [VN ] is either plus or minus infinity depending
on the sign of the coefficient before hSk . Therefore we need ρk(Sk, Vk, h

S
k ) to be

a non-linear function of hSk for all k = 0, . . . , N − 1. This condition excludes,
for example, a risk function equal to the Delta or any other Greek of the
portfolio, which are linear or do not depend on hS.

Thirdly, to make calculations of the optimal strategies easier we require
the function ρk(Sk, Vk, h

S
k ) to be convex function of the third variable. Let

us remind the reader that ρk(Sk, Vk, h
S
k ) appears in (5.8) with a negative

coefficient Ek, so if ρk(Sk, Vk, h
S
k ) is convex in the third argument then Vk+1

is a concave function of hSk .

And finally we would like our risk function to be positive only for those
values of the Greeks that traders do hedge. A positive Volga, for exam-
ple, means that the price of the portfolio is a convex function of volatility.
Therefore changes in volatility will result in higher price growth than price
decline. (In some neighborhood of V = 0 any change in volatility will result
in the portfolio price growth.) Thus traders prefer not to hedge Volga if it is
positive. If Vanna is negative and the stock price and the volatility change
differently (one drops, while another grows), then again the possible price
growth is higher than the possible price decline. In equity markets stock
prices and volatility are negatively correlated, which means that often their
values move in the opposite directions more often than in the same. That is
why equity traders prefer to keep negative Vanna unhedged. For some assets
(e.g. some foreign exchange rates) the spot-volatility correlation is positive.
In those cases a positive Vanna is left unprotected.

Taking all this into account we decide to use the following risk function:

ρk(Sk, h
S
k ) = α1S

2
k

(

hSk + ∆̂k

)2

+

(

Ek [Rk] − er∆tk
)2

4α1E
2
k

+ α2 |Vk|

+ max(α3vannak, 0) + max(−α4volgak, 0), (5.12)
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where α1, α2, α4 ≥ 0, α3 ∈ R and Vk, vannak, volgak are the sums of the
corresponding Black-Scholes Greeks and ∆̂k is the sum of binomial Deltas of
all the options included in the portfolio:

∆̂k =

n
∑

i=k+1

∆̂i
k, (5.13)

Vk =
n
∑

i=k+1

V ik,

vannak =
n
∑

i=k+1

vannaik,

volgak =

n
∑

i=k+1

volgaik,

k = 0, . . . , N − 1. Note that unlike other parameters α3 may be either
positive or negative. We may choose its sign according to the correlation of
the volatility and the underlying. The second term is there to make sure that
the model does not produce arbitrage. Actually, as it will be clear further
on, this term is equal to the expected profit on the kth step from the optimal
trading in the underlying asset, divided by −Ek. So it eliminates the average
growth of the portfolio value due to the trading in the underlying market.

Unlike VaR the risk function ρk does not depend on the distribution of the
underlying assets but depends on observable parameters only. It measures
the local risk of a trader in each particular state of the market. Note, that it
is not dependent on the portfolio value. Each parameter αj, (j = 2, 3, 4) can
be thought of as a market price of risk we assign based on the jth Greek. The
risk contained in the Greeks cannot be hedged by trading in the underlying
asset, except for Delta. Including these Greeks in the risk function affects
the indifference prices and creates bid-ask spreads (while not affecting the
hedging strategies). In section 5.3 we derive an analytical formula for the
indifference prices, which implies that they are not affected by the coefficient
α1. This coefficient is a risk aversion parameter, which reflects how well we
wish to be delta-hedged. The analytical formula also implies that α2 does
not affect the mid prices in the presence of the zero portfolio due to the even
appearance of Vega in the function ρk(S, h

S).

From now on we will use the following notation:

ρ̂k(Sk) = α2 |Vk| + max(α3vannak, 0) + max(−α4volgak, 0) (5.14)
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for all k = 0, . . . , N − 1, so

ρk(Sk, h
S
k ) = α1S

2
k

(

hSk + ∆̂k

)2

+

(

E [Rk] − er∆tk
)2

4α1E
2
k

+ ρ̂k(Sk), (5.15)

for all k = 0, . . . , N − 1.

5.2 The Dynamic Programming Algorithm

This section provides the algorithm for the numerical solution of our
optimization problem (5.7). By theorem 4.2.1 to find the solution we should
optimize by proceeding backwards step by step, starting in tN :

JN(SN , VN) = VN (5.16)

Jk(Sk, Vk) = max
hS

k

Ek

[

Jk+1

(

SkRk, Vke
r∆tk + Skh

S
k

(

Rk − er∆tk
)

+ ρk(Sk, h
S
k )Ek + Φk+1(SkRk)

)]

for all k = 0, . . . , N − 1. Note that here we optimize as in chapter 4, over
Markov policies without loss of generality. The following proposition states
that Jk(S, V ) defined by (5.16) is an affine function of V :

Proposition 5.2.1 The Jk(S, V ) as defined in (5.16) are affine functions
of V :

Jk(S, V ) = AkV + Ck(S), k = 0, . . . , N,

where Ak = er(T−tk) and Ck : R+ → R is a deterministic function that does
not depend on V .

Proof We prove the proposition by backward induction in k. First, the
statement is true for k = N :

AN = 1

CN = 0

Assume the statement is true for k + 1, . . . , N . Let us prove the statement
for k. Using (5.16) and the induction hypothesis we have

Jk(Sk, Vk) = max
hS

k

Ek

[

Ak+1 ·
{

Vke
r∆tk + Skh

S
k

(

Rk − er∆tk
)

+ ρk(Sk, h
S
k )Ek + Φk+1(SkRk)

}

+ Ck+1(SkRk)
]

= max
hS

k

[

Ak+1e
r∆tkVk + Ak+1

{

Skh
S
k

(

Ek [Rk] − er∆tk
)

+ ρk(Sk, h
S
k )Ek + Ek [Φk+1(SkRk)]

}

+ Ek [Ck+1(SkRk)]
]

.
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Since ρk(Sk, h
S
k ) is a convex quadratic function of the second argument (see

(5.15) and (5.14)), then ρk(Sk, h
S
k )Ek is quadratic with a negative highest or-

der coefficient, because Ek < 0, and Jk(Sk, Vk) is the maximum of a quadratic
function of hSk with a positive highest order coefficient. Therefore

Jk(Sk, Vk) = Ak+1e
r∆tkVk +

(

Ak+1

{

Sk(h
S
k )

∗ (Ek [Rk] − er∆tk
)

+

(

α1S
2
k

(

(

hSk
)∗

+ ∆̂k

)2

+

(

E [Rk] − er∆tk
)2

4α1E2
k

+ ρ̂k(Sk)

)

Ek

+ Ek [Φk+1(SkRk)]} + Ek [Ck+1(SkRk)])

with

(hSk )
∗ = −∆̂k −

(

Ek [Rk] − er∆tk
)

2α1SkEk
. (5.17)

This means that Jk(Sk, Vk) is also a linear function of Vk:

Jk(Sk, Vk) = AkVk +Bk(Sk)

where we take

Ak = Ak+1e
r∆tk

Ck(Sk) = Ak+1{−Sk∆̂k

(

Ek [Rk] − er∆tk
)

+ ρ̂k(Sk)Ek

+Ek [Φk+1(SkRk)]} + Ek [Ck+1(SkRk)] (5.18)

Note that equation (5.17) gives us the optimal hedging strategy. For small
time increments we have the following asymptotics for k = 0, . . . , N − 1

(hSk )
∗Sk = −∆̂kSk + e−r̃tk

(

µ− r

r − r̃

)

1

2α1

+ o(1), ∆tk → 0. (5.19)

So the optimal strategy is a corrected binomial hedge. The asymptotics of
the correction term show that the bigger is the difference between the drift
µ and the risk-free rate r the more we should invest in the underlying asset.
On the other hand, the bigger the difference between the rates on the reserve
and the regular bank accounts and the higher the value of the risk aversion
parameter α1, the less we should invest in the underlying.

Proposition 5.2.1 provides us with formulae for the numerical algorithm.
We run the backward recursion for Ak and Ck(S) using (5.18) to get A0 = erT

and C0(S). By Theorem 4.2.1, J0(S0, V0) = erTV0+C0(S0) is then the solution
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to our optimization problem, and it is the expected value of the optimally
hedged portfolio at time T . C0(S0) is the effect of the introduction of options
in the portfolio. Note, that if there are no options (payoff function Φ(t, S) is
zero for all t ∈ T , S ∈ R+), then C0(S0) is also zero and J0(S0, V0) = erTV0,
the value of investing all initial capital in the bank account B. Note that the
extra investment in stocks does not change the expected value, because the
second term of the risk function (see (5.15)) nullifies it.

5.3 Analytical Solutions for the Indifference

Prices

In this section we prove a theorem which gives a relation between the
indifference price and the no-arbitrage price in the binomial model. This
result gives a clear characterization of the prices in the model with cost
of risk as the binomial price plus a correction term dependent on the risk
function. The fact that indifference prices do not depend on the parameter
α1 and that the indifference mid prices do not depend on the parameter α2

are then the corollaries. We also prove that the buying indifference price of
a portfolio is the minimum of all its selling prices.

Further we will add superscripts Φ, Ψ etc. to some functions to stress
the relation of these functions to portfolios Φ, Ψ etc. For example we write
ρΦ
k (Sk) for the value of the risk function of portfolio Φ and ∆̂i,Φ

k for the Delta
at time tk of the total payoff Φi at time ti > tk of option portfolio Φ. We
define

Ek,i = er̃ti−r(ti+1−tk)
(

er̃∆ti − er∆ti
)

for all k = 0, . . . , N − 1 and i = k, . . . , N − 1.

Theorem 5.3.1 For all k = 0, . . . , N and all portfolios Φ and Ψ of Eu-
ropean options the following equations hold

{Φ}s{Ψ},k (Sk) =

N
∑

i=k+1

Bini,Φi

k (Sk) +

N−1
∑

i=k

Ek

[

ρ̂Ψ
i (Si) − ρ̂Ψ−Φ

i (Si)
]

Ek,i, (5.20)

{Φ}b{Ψ},k (Sk) =

N
∑

i=k+1

Bini,Φi

k (Sk) +

N−1
∑

i=k

Ek

[

ρ̂Φ+Ψ
i (Si) − ρ̂Ψ

i (Si)
]

Ek,i, (5.21)

where ρ̂k(S) is defined in (5.14).

Before proving the theorem we prove the following two lemmas.
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Lemma 5.3.2 Let us for all k = 0, . . . , N − 1 and for any measurable
function f : R → R define ∆̃f

k as

∆̃f
k(S) =

f(Suk) − f(Sdk)

Suk − Sdk
.

Then the following equation holds

Ek [f(SkRk)] − Sk∆̃
f
k(Sk)

(

Ek [Rk] − er∆tk
)

= EQ̂
k [f(SkRk)] ,

where Q̃ is defined in (5.9)-(5.10).

Proof

Ek [f(SkRk)] − Sk∆̃
f
k

(

Ek [Rk] − er∆tk
)

=
f(Skuk) + f(Skdk)

2
− Sk

f(Skuk) − f(Skdk)

Skuk − Skdk

(

uk + dk
2

− er∆tk
)

= f(Skuk)
er∆tk − dk
uk − dk

+ f(Skdk)
uk − er∆tk

uk − dk
= EQ

k [f(SkRk)] .

Note that if f is the binomial price at time tk of the payoff Φi(Si) at time
ti > tk

f(S) = Bini,Φi

k+1(S),

then

∆̃f
k(Sk) = ∆̂i,Φ

k ,

defined in (5.11). Thus by lemma 5.3.2,

Ek

[

Bini,Φi

k+1(SkRk)
]

− Sk∆̂
i,Φ
k

(

Ek [Rk] − er∆tk
)

= EQ̂

k

[

Bini,Φi

k+1(SkRk)
]

.(5.22)

Lemma 5.3.3 For all k = 0, . . . , N and all portfolios Φ and Ψ of Euro-
pean options

{Φ}s{Ψ},k(Sk) = e−r(T−tk)
(

CΨ
k (Sk) − CΨ−Φ

k (Sk)
)

, (5.23)

{Φ}b{Ψ},k(Sk) = e−r(T−tk)
(

CΨ+Φ
k (Sk) − CΨ

k (Sk)
)

, (5.24)

where the functions Ck are as defined in (5.18).



Model with Cost of Risk 75

Proof We prove only the first equality since the proof for the second
one is similar. By definition 5.1.2 and Theorem 4.2.1 the indifference selling
price at time tk is

{Φ}s{Ψ},k(Sk) = e−r(T−tk)
(

JΨ
k (Sk, Vk) − JΨ−Φ

k (Sk, Vk)
)

,

where

JΨ
k (Sk, Vk) = AkVk + CΨ

k (Sk)

JΨ−Φ
k (Sk, Vk) = AkVk + CΨ−Φ

k (Sk)

therefore

{Φ}s{Ψ}k(Sk) = e−r(T−tk)
(

CΨ
k (Sk) − CΨ−Φ

k (Sk)
)

. (5.25)

Now we are ready to prove Theorem 5.3.1.

Proof (of Theorem 5.3.1). We prove (5.20) by backward induction in k.
1. The case of k = N is trivial, since both sides of the equality are zeros:

{Φ}s{Ψ},N (SN) = JΨ
N (SN , VN) − JΨ−Φ

N (SN , VN) = VN − VN = 0

N
∑

i=N+1

BinΦi

N (SN) +

N−1
∑

i=N

Ek

[

ρ̂Ψ(Si) − ρ̂Ψ−Φ(Si)
]

er̃ti(e
r̃∆ti−er∆ti) = 0

2. Assume we have proved (5.20) for all k + 1, . . . , N . Now we prove it
for k. From (5.23) we have

{Φ}s{Ψ},k(Sk) = e−r(T−tk)
(

CΨ
k (Sk) − CΨ−Φ

k (Sk)
)

,

substituting Ck(Sk) from (5.18) we write

{Φ}s{Ψ},k(Sk) = e−r∆tk
{

−Sk
(

∆̂Ψ
k − ∆̂Ψ−Φ

k

)

(

Ek [Rk] − er∆tk
)

+ ( ρ̂Ψ
k (Sk) − ρ̂Ψ−Φ

k (Sk) )Ek + Ek [Ψk+1(SkRk)]

−Ek [Ψk+1(SkRk) − Φk+1(SkRk)]}
+e−r(T−tk)

{

Ek

[

CΨ
k+1(SkRk)

]

− Ek

[

CΨ−Φ
k+1 (SkRk)

]}

.

By the definition of the portfolio Delta (5.13) and by (5.23) we write

{Φ}s{Ψ},k(Sk) = e−r∆tk{−Sk
N
∑

i=k+1

∆̂i,Φ
k

(

Ek [Rk] − er∆tk
)

+
(

ρ̂Ψ
k (Sk) − ρ̂Ψ−Φ

k (Sk)
)

Ek + Ek [Φk+1(SkRk)]

+Ek

[

{Φ}s{Ψ},k+1(SkRk)
]

}.
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By the induction assumption

{Φ}s{Ψ},k+1 (SkRk) =

N
∑

i=k+2

Bini,Φi

k+1(SkRk) +

N−1
∑

i=k+1

Ek+1

[

ρ̂Ψ
i (Si) − ρ̂Ψ−Φ

i (Si)
]

Ek+1,i,

therefore

{Φ}s{Ψ},k(Sk) = e−r∆tk

{

−Sk
N
∑

i=k+1

∆̂i,Φi

k

(

Ek [Rk] − er∆tk
)

+
(

ρ̂Ψ
k (Sk) − ρ̂Ψ−Φ

k (Sk)
)

Ek

+Ek [Φk+1(SkRk)] +
N
∑

i=k+2

Ek

[

Bini,Φi

k+1(SkRk)
]

+

N−1
∑

i=k+1

Ek

[

ρ̂Ψ
i (Si) − ρ̂Ψ−Φ

i (Si)
]

Ek+1,i

}

.

Regrouping the terms we get

{Φ}s{Ψ},k(Sk) = e−r∆tk
{

Ek [Φk+1(SkRk)] − Sk∆̂
k+1,Φk+1

k

(

Ek [Rk] − er∆tk
)

+
N
∑

i=k+2

Ek

[

Bini,Φi

k+1(SkRk)
]

− Sk

N
∑

i=k+2

∆̂i,Φi

k

(

Ek [Rk] − er∆tk
)

+

N−1
∑

i=k

Ek

[

ρ̂Ψ
i (Si) − ρ̂Ψ−Φ

i (Si)
]

Ek+1,i

}

,

which by Lemma 5.3.2 and (5.22) yields

{Φ}s{Ψ},k(Sk) = e−r∆tk

{

EQ̂
k [Φk+1(SkRk)] +

N
∑

i=k+2

EQ̂
k

[

Bini,Φi

k+1(SkRk)
]

}

+

N−1
∑

i=k

Ek

[

ρ̂Ψ
i (Si) − ρ̂Ψ−Φ

i (Si)
]

Ek,i

=

N
∑

i=k+1

Bini,Φi

k (Sk) +

N−1
∑

i=k

Ek

[

ρ̂Ψ
i (Si) − ρ̂Ψ−Φ

i (Si)
]

Ek,i

and thus we have proved (5.20). The proof of (5.21) is similar.

As a straightforward corollary from this theorem follow the independence
of the indifference prices of the parameter α1 and the independence of the
mid indifference prices in the presence of the zero portfolio of the parameter
α2.
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Corollary 5.3.4 For all portfolios Φ and Ψ, for all k = 0, . . . , N − 1
(i) the indifference prices {Φ}s{Ψ},k, {Φ}b{Ψ},k and {Φ}m{Ψ},k do not depend on
α1,
(ii) the indifference mid prices in presence of the zero portfolio {Φ}m{0},k do
not depend on α2.

Proof (i) Since ρ̂Φ
k (S) is independent of α1 for all k = 0, . . . , N − 1 and

all portfolios Φ, then by (5.20) and (5.21) {Φ}s{Ψ},k and {Φ}b{Ψ},k are also

independent of α1, therefore {Φ}m{Ψ},k is also independent.

(ii) By definition

{Φ}m{0},k =
{Φ}s{0},k + {Φ}b{0},k

2
.

Therefore by Theorem 5.3.1

{Φ}m{0},k =

N
∑

i=k+1

Bini,Φi

k (Sk) +

N−1
∑

i=k

Ek

[

ρ̂Φ
i (Si) − ρ̂−Φ

i (Si)

2

]

Ek,i.

By the definition of ρ̂k(Sk) from (5.14) we write for all i = k, . . . , N − 1

ρ̂Φ
i (Si) − ρ̂−Φ

i (Si) = α2

(

|VΦ
i | − |V−Φ

i |
)

+
(

max
(

α3vannaΦ
i , 0
)

− max
(

α3vanna−Φ
i , 0

))

+
(

max
(

−α4volgaΦ
i , 0
)

− max
(

−α4volga−Φ
i , 0

))

= α2

(

|VΦ
i | − | − VΦ

i |
)

+
(

max
(

α3vannaΦ
i , 0
)

− max
(

−α3vannaΦ
i , 0
))

+
(

max
(

−α4volgaΦ
i , 0
)

− max
(

α4volgaΦ
i , 0
))

= α3vannaΦ
i − α4volgaΦ

i .

Hence {Φ}m{0},k does not depend on α2.

In the market all options are available to buy for their selling prices.
Another interesting property of the model with cost of risk is that for any
options portfolio Φ its buying indifference price in the presence of the zero
portfolio is the smallest selling indifference prices of this portfolio.

Theorem 5.3.5 For all k = 0, . . . , N − 1, all portfolios of European
options Φ, and all S ∈ R+ the following is true:

{Φ}b{0},k(S) = min
Ψ

{

{Φ}s{Ψ},k(S)
}

.
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Proof First we note that for all k = 0, . . . , N − 1, β > 0, S ∈ R+ and
any portfolio of European options Φ

ρ̂βΦ
k (S) = βρ̂Φ

k (S). (5.26)

Indeed,

ρ̂βΦ
k (S) = α2

∣

∣

∣
VβΦ
k

∣

∣

∣
+ max

(

α3vannaβΦ
k , 0

)

+ max
(

−α4volgaβΦ
k , 0

)

= α2

∣

∣βVΦ
k

∣

∣ + max
(

α3βvannaΦ
k , 0
)

+ max
(

−α4βvolgaΦ
k , 0
)

= β
(

α2

∣

∣VΦ
k

∣

∣+ max
(

α3vannaΦ
k , 0
)

+ max
(

−α4volgaΦ
k , 0
))

= βρ̂Φ
k (S).

We also note, that for all k = 0, . . . , N−1, and all S ∈ R+, ρ̂Φ
k (S) is a convex

function of Φ:

ρ̂
βΦ+(1−β)Ψ
k (S) ≤ βρ̂Φ

k (S) + (1 − β)ρ̂Ψ
k (S), (5.27)

for any β ∈ [0, 1] and Φ and Ψ portfolios of European options. To see this
we write

ρ̂
βΦ+(1−β)Ψ
k (S) = α2

∣

∣

∣
VβΦ+(1−β)Ψ
k

∣

∣

∣
+ max

(

α3vanna
βΦ+(1−β)Ψ
k , 0

)

+ max
(

−α4volga
βΦ+(1−β)Ψ
k , 0

)

= α2

∣

∣βVΦ
k + (1 − β)VΨ

k

∣

∣+ max
(

α3

(

βvannaΦ
k + (1 − β)vannaΨ

k

)

, 0
)

+ max
(

−α4

(

βvolgaΦ
k + (1 − β)volgaΨ

k

)

, 0
)

≤ β
(

α2

∣

∣VΦ
k

∣

∣+ max
(

α3vannaΦ
k , 0
)

+ max
(

−α4volgaΦ
k , 0
))

+(1 − β)
(

α2

∣

∣VΨ
k

∣

∣ + max
(

α3vannaΨ
k , 0
)

+ max
(

−α4volgaΨ
k , 0
))

= βρ̂Φ
k (S) + (1 − β)ρ̂Ψ

k .

Now using properties (5.26) and (5.27) for all k = 0, . . . , N − 1, S ∈ R+ and
portfolios Φ, Ψ we can write

ρ̂Ψ
k (S) = ρ̂Ψ−Φ+Φ

k (S) = 2ρ̂
1
2
(Ψ−Φ)+ 1

2
Φ

k (S) ≤ ρ̂Ψ−Φ
k (S) + ρ̂Φ

k (S)

so for all k = 0, . . . , N − 1, S ∈ R+ and portfolios Φ, Ψ

ρ̂Ψ
k (S) − ρ̂Ψ−Φ

k (S) ≤ ρ̂Φ
k (S).
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By Theorem 5.3.1, noting that ρ̂0
k(S) = 0 for all k = 0, . . . , N − 1, S0 ∈ R+

and remembering that since r̃ < r the expression er̃∆ti − er∆ti < 0

{Φ}b{0},k(Sk) =
N
∑

i=k+1

Bini,Φi

k (Sk) +
N−1
∑

i=k

Ek

[

ρ̂Φ
i (Si)

]

er̃(tk−∆ti)
(

er̃∆ti − er∆ti
)

≤
N
∑

i=k+1

Bini,Φi

k (Sk)

+
N−1
∑

i=k

Ek

[

ρ̂Ψ
i (Si) − ρ̂Ψ−Φ

i (Si)
]

er̃(tk−∆ti)
(

er̃∆ti − er∆ti
)

= {Φ}s{Ψ},k(Sk),

therefore for all Ψ, for all k = 0, . . . , N − 1 and for all S ∈ R+

{Φ}b{0}(S) ≤ {Φ}s{Ψ}(S).

The equality holds for Ψ = Φ:

{Φ}s{Φ},k(S) = e−r(T−tk)
(

CΦ
k (S) − CΦ−Φ

k (S)
)

= e−r(T−tk)
(

CΦ
k (S) − C0

k(S)
)

= {Φ}b{0},k(S).

5.4 Absence of Arbitrage

In this paragraph we are going to show that our model does not allow
arbitrage. We think of arbitrage as an opportunity for a new player in the
market to make a sure profit without any initial investments. Or in other
words, a possibility for a trader to get a riskless positive profit for a zero initial
price when starting from a zero portfolio. Further on in this paragraph we will
call a hedging portfolio for options Φ of a new trader the hedging portfolio of
a trader who hedges Φ and only Φ optimally according to (5.17). The value
of this portfolio at time tk is given by

Vk+1 = Vke
r∆t − Sk∆̂k

(

Rk − er∆tk
)

−
(

Rk − er∆tk
) (

E [Rk] − er∆tk
)

2α1Ek

+

(

E [Rk] − er∆tk
)2

2α1Ek
+ ρ̂Φ

k (Sk)Ek + Φk+1(Sk+1) (5.28)

for all k = 1, . . . , N and some V0 ∈ R. This can be seen by substituting
(5.15) and (5.17) into (5.8)
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Definition 5.4.1 In the model with cost of risk we call an arbitrage

opportunity for a new trader a portfolio of European options Φ such
that the value of its hedging portfolio of a new trader satisfies

V0 = −{Φ}s{Ψ},0(S0)

P (VN ≥ 0) = 1

P (VN > 0) > 0.

for some portfolio of options Ψ.

In other words an arbitrage opportunity for a new trader is a possibility
for a trader holding the zero portfolio to buy options portfolio Φ, hedge it
optimally and at time tN get a riskless profit. We assume that all options in
the market are available for their selling prices from various traders, holding
their different portfolios. So the value V0 = −{Φ}s{Ψ},0(S0) at time t0 corre-
sponds to the amount borrowed from the bank account B for the purchase of
portfolio Φ from a trader who holds portfolio Ψ. Note that by the definition
(5.3) the price of an option portfolio is not included in the portfolio value
before its expiry date. That is why the initial zero investment corresponds
to minus the price of the portfolio.

The buying indifference prices (and also selling indifference prices in the
presence of some non-zero portfolios) of positive payoffs may in principle
turn out to be negative (see the example below). Nevertheless this does not
necessarily mean that these payoffs are arbitrage opportunities, because the
buyer of a risky option is obliged to put money on the reserve bank account
according to the risk of his or her portfolio. Transferring this money from
the regular to the reserve bank account makes the trader lose money.

In the classical definition of an arbitrage opportunity we gave in chapter
2 the trader always starts with an empty portfolio, so in the traditional
formulation everyone is a ‘new trader’. In this sense the definition of an
arbitrage opportunity for a new trader is equivalent to the definition 2.2.3.

Example As a simple example we consider a one-step model with the
following parameters: µ = 0.05, r = 0.03, r̃ = 0, σ = 0.3, T = 1, S0 = B0 =
1, α1 = 1, α2 = 20, α3 = α4 = 0. Then at time t1 = T = 1

B1 = 1.0305,

S1 =

{

1.3566 with probability 1
2

0.7445 with probability 1
2

.

Consider a European Call Φ with strike K = 1 and maturity T1 = 1. Then
its binomial price in this one-step model is

Bin1,Φ
0 (S0) = e−rT

(

qu0Φ(u0S0) + qd0Φ(d0S0)
)

= 0.1617,
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and its Vega is

V1
0 = 0.4116,

then

ρ̂Φ
0 (S0) = α2|V0| = 8.2321,

E0,0 = e−r
(

er̃ − er
)

= −0.0296,

and hence by Theorem 5.3.1

{Φ}b{0},0(S0) = Bin1,Φ1

0 (S0) + ρ̂Φ
0 (S0)E0,0 = −0.0816.

The negative price we have got is explained by a very high value of parameter
α2 and reflects the trader’s fear of risk, which makes him or her very unwilling
towards accepting this payoff. Under the same assumptions, by Lemma 5.3.3
the selling indifference price of Φ in the presence of Φ (which is the price the
trader who holds Φ will ask for giving Φ away) is

{Φ}s{Φ},0(S0) = e−rT
(

CΦ
0 (S0) − CΦ−Φ

0 (S0)
)

= e−rT
(

CΦ
0 (S0) − C0

0(S0)
)

= {Φ}b{0},0(S0),

the price a trader without a portfolio will offer for having Φ. And thus

{Φ}s{Φ},0(S0) = −0.0816.

Again, the punishment for the risk is so high (α2 = 20) that the holder of Φ
is ready to get rid of it even for a negative price.

In lemma 5.4.1 and theorem 5.4.2 we prove that our model does not allow
arbitrage opportunities for a new trader.

Lemma 5.4.1 If V is the value of a hedging portfolio for options portfolio
Φ of a new trader with

V0 = −{Φ}s{Ψ},0(S0),

for some options portfolio Ψ then VN satisfies the following inequality

VN(ω) ≤
N−1
∑

k=0

(

ρ̂Φ
k (Sk(ω)) −E

[

ρ̂Φ
k (Sk)

])

EN,k

+

N−1
∑

k=0

(

Ek [Rk] − er∆tk
)

(Ek [Rk] −Rk(ω))

2α1Ek
er(tN−tk+1)

for all ω ∈ Ω.
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Proof By induction in k we prove that for all k = 0, . . . , N

Vk ≤ −
N
∑

i=k+1

Bini,Φi

k (Sk) −
N−1
∑

i=0

E
[

ρ̂Φ
i (Si)

]

Ek,i +

k−1
∑

i=0

ρ̂Φ
i (Si)Ek,i

+
k−1
∑

i=0

(

Ei [Ri] − er∆ti
)

(Ei [Ri] − Ri)

2α1Ei
er(tk−ti+1). (5.29)

1. k = 0.

V0 = −{Φ}s{Ψ},0(S0),

then by theorem 5.3.5

V0 ≤ −{Φ}b{0},0(S0)

therefore by theorem 5.3.1

V0 ≤ −
N
∑

i=1

Bini,Φi

0 (S0) −
N−1
∑

i=0

E
[

ρ̂Φ
i (Si)

]

E0,i.

2. Assume the statement is proved for 0, . . . , k. By (5.28) we write

Vk+1 = Vke
r∆t − Sk∆̂

Φ
k

(

Rk − er∆tk
)

−
(

Rk − er∆tk
) (

Ek [Rk] − er∆tk
)

2α1Ek

+

(

Ek [Rk] − er∆tk
)2

2α1Ek
+ ρ̂Φ

k (Sk)Ek + Φk+1(Sk+1).

By the induction assumption

Vk+1 ≤
(

−
N
∑

i=k+1

Bini,Φi

k (Sk) −
N−1
∑

i=0

E
[

ρ̂Φ
i (Si)

]

Ek,i +
k−1
∑

i=0

ρ̂Φ
i (Si)Ek,i

+

k−1
∑

i=0

(

Ei [Ri] − er∆ti
)

(Ei [Ri] − Ri)

2α1Ei
er(tk−ti+1)

)

er∆tk (5.30)

−Sk∆̂Φ
k

(

Rk − er∆tk
)

−
(

Rk − er∆tk
) (

Ek [Rk] − er∆tk
)

2α1Ek

+

(

Ek [Rk] − er∆tk
)2

2α1Ek
+ ρ̂Φ

k (Sk)Ek + Φk+1(Sk+1).
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Since ∆̂Φ
k =

N
∑

i=k+1

∆̂i,Φi

k is the sum of binomial Deltas of payoffs to be paid

after time tk, the following is true

N
∑

i=k+1

er∆tkBini,Φi

k (Sk) + Sk∆̂
Φ
k

(

Rk − er∆tk
)

=

N
∑

i=k+1

Bini,Φi

k+1(Sk+1). (5.31)

Note that by the definition of the binomial price

Bink,Φk

k (Sk) = Φk(Sk) (5.32)

for all k = 1, . . . , N . We should also mention that

Ek,ie
r∆tk = er̃ti−r(ti+1−tk+1)

(

er̃∆ti − er∆ti
)

= Ek+1,i, (5.33)

Ek = er̃tk−r(tk+1−tk+1)
(

er̃∆tk − er∆tk
)

= Ek+1,k. (5.34)

Applying (5.31)-(5.34) to (5.30) we get

Vk+1 ≤ −
N
∑

i=k+2

Bini,Φi

k+1(Sk+1) −
N−1
∑

i=0

E
[

ρ̂Φ
i (Si)

]

Ek+1,i +

k
∑

i=0

ρ̂Φ
i (Si)Ek+1,i

+

k
∑

i=0

(

Ei [Ri] − er∆ti
)

(Ei [Ri] − Ri)

2α1Ei
er(tk+1−ti+1),

so (5.29) is true for all k = 0, . . . , N . Substituting k = N gives us the
statement of the lemma:

VN ≤
N−1
∑

i=0

(

ρ̂Φ
i (Si) − E

[

ρ̂Φ
i (Si)

])

EN,i

+

N−1
∑

i=0

(

Ei [Ri] − er∆ti
)

(Ei [Ri] − Ri)

2α1Ei
er(tN−ti+1).

As a corollary of Lemma 5.4.1 we prove that our model admits no arbi-
trage opportunities for new traders.

Theorem 5.4.2 (No Arbitrage) There are no portfolios of options Φ
and Ψ such that the value of the hedging portfolio for Φ of a new trader
satisfies

V0 = −{Φ}s{Ψ},0(S0) (5.35)

P (VN ≥ 0) = 1 (5.36)

P (VN > 0) > 0. (5.37)
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Proof By Lemma 5.4.1 from (5.35) the value of the hedging portfolio
for Φ of a new trader satisfies

VN ≤
N−1
∑

k=0

(

ρ̂Φ
k (Sk) − E

[

ρ̂Φ
k (Sk)

])

EN,k

+

N−1
∑

k=0

(

Ek [Rk] − er∆tk
)

(Ek [Rk] −Rk)

2α1Ek
er(tN−tk+1).

Since the expectation of the random variable on the right is zero, then taking
expectations on both sides gives us

E [VN ] ≤ 0,

which contradicts (5.36) and (5.37). Therefore there is no arbitrage for a
new trader in the model with cost of risk.
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Numerical Results

This chapter presents the numerical results we have obtained from the
model with cost of risk. First we show the buying and the selling indiffer-
ence prices for some values of parameters and some portfolios of European
options to demonstrate the key properties of the model. Then we present
the calibration results of the indifference mid prices to the market prices.

6.1 Indifference Prices

To demonstrate the main properties of the indifference prices of the model
with cost of risk we present the buying and the selling indifference prices of
at the money Calls and Puts in the presence of different portfolios for a
given (artificial) set of model parameters. We also compare these prices to
the prices of the same options in a binomial model with the corresponding
market parameters. The following values of the model parameters are used:

µ = 0.05 σ = 0.3
r = 0.03 r̃ = 0.0
S0 = 1.0 T = 1.0
α1 = 1.0.

For simplicity we use α3 = α4 = 0. All observations hold true for other
values of α3 and α4 and are simple corollaries of the pricing theorem 5.3.1.
We take the Put and the Call with the same maturities TPut = TCall = 1.0
year and strikes KPut = KCall = 1.0. The results are presented in table
6.1.

First of all we note that the Put-Call parity price {Call−Put}s0 does not
depend on the value of α and is equal to its theoretical value S0 −Ke−rT =
0.0296. This should not be a surprise, since all sensitivities apart from Delta

85
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option,α2 → 0.01 0.1 0.5 1 BS Price
↓
{Put}s0 0.1033 0.1035 0.1041 0.1049 0.1033
{Put}b0 0.1033 0.1031 0.1025 0.1017 0.1033
{Put}s{-Put} 0.1034 0.1037 0.1057 0.1081 0.1033

{Call}s0 0.1329 0.1330 0.1337 0.1345 0.1328
{Call}b0 0.1328 0.1327 0.1320 0.1312 0.1328
{Call}s{-Call} 0.1329 0.1333 0.1352 0.1377 0.1328

{Call − Put}s0 0.0296 0.0296 0.0296 0.0296 0.0296
{Put}sCall 0.1032 0.1031 0.1024 0.1016 0.1033

{Call}b-Put 0.1329 0.1331 0.1337 0.1345 0.1328

Table 6.1: Indifference Prices

of this portfolio are zero and therefore the portfolio can be hedged in a
riskless way so there is no change in the price. The more formal argument
is based on Theorem 5.3.1: if all Greeks are zero apart from Delta, then

ρ̂Call−Put
k (S) = 0 for all k = 0, . . . , N − 1 and all S ∈ R, so the indifference

price of the portfolio is equal to the binomial price, which satisfies the Call-
Put parity.

If we look at the indifference prices of the Put and the Call in the presence
of the zero portfolio, then we see that the selling prices {Put}s0 and {Call}s0 are
higher and the buying prices {Put}b0 and {Call}b0 are lower than the binomial
prices. In other words, the trader wants to receive more for selling an option
and to pay less for buying it — the model produces bid-ask spreads. The
risk of a portfolio consisting of options is always bigger than zero. Therefore
if a trader holding the zero portfolio buys an option he or she is obliged to
put a certain positive amount of money in the reserve bank account, which
earns a lower interest rate. So he or she wishes to be compensated for this
loss by receiving a higher premium. Note, that the bid-ask spreads widen if
α2, the cost of the Vega risk, grows. The selling prices of a Call or a Put
in the presence of a short position in the same option grow even faster with
the growth of α2 than the same prices in the presence of the zero portfolio
(compare {Put}s{−Put} and {Put}s0, {Call}s{−Call} and {Call}s0) since here

selling adds an extra risk to an already risky portfolio.

Finally we would like to draw the reader’s attention to the fact that
the ask prices of the Put become lower and bid prices of the Call become
higher in the presence of their Put-Call parity counterparts: {Put}s{Call},
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{Call}b{−Put}. This is exactly what we should expect. Since Put and Call

positions with opposite signs reduce each other’s hedging risk, a trader is
ready to pay more to get one of them to his or her portfolio, if he or she
already has the other, and the trader asks for less money, when he or she is
selling them.

6.2 Calibration to the Market Data

6.2.1 Parameters’ Interpretation

We have calibrated the mid indifference prices of the model with cost of
risk to the market prices of a few European options. As we have already
mentioned in section 5.1.2, α1 is the risk aversion parameter and influences
only the hedging strategies, not the price, while α2 is responsible for bid-ask
spreads and does not influence the mid prices in the presence of the zero
portfolio. Other parameters of the risk function α3 and α4 and also the
volatility σ of the underlying model can be used for the calibration of the
indifference mid prices. We used a fixed value for the drift parameter µ.

Consider a one year Call. By Theorem 5.3.1 its indifference mid price in
the presence of the zero portfolio at time t0 is

{Call}m{0},0(S0) =
{Φ}s{0},0(S0) + {Φ}b{0},0(S0)

2

= BinΦ
0 (S0) +

N−1
∑

i=0

E0

[

ρ̂Φ
i (Si) − ρ̂Φ

i (Si)

2

]

E0,i

= BinΦ
0 (S0)

+
N−1
∑

i=0

E0

[

max
(

α3vannaΦ
i (Si), 0

)

− max
(

−α3vannaΦ
i (Si), 0

)

2

]

E0,i

+

N−1
∑

i=0

E0

[

max
(

−α4volgaΦ
i (Si), 0

)

− max
(

α4volgaΦ
i (Si), 0

)

2

]

E0,i

= BinΦ
0 (S0) +

1

2

N−1
∑

i=0

E0

[

α3vannaΦ
i (Si) − α4volgaΦ

i (Si)
]

E0,i.

If we now look at the graphs of Vanna and Volga presented in figures 6.1 and
6.2 of a European Call option with maturity 1 year we see that the correction
to the theoretical binomial price depends on the strike. Note, that E0,i < 0
for all i = 0, . . . , N − 1 hence the Volga correction is positive and is higher
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Figure 6.1: Vanna of a 1 year option, r = 0.03, σ = 0.3.

for the far in the money and far out of the money options than for at the
money options. The Vanna term changes sign from plus to minus (or from
minus to plus — depending on the sign of α3) and therefore makes one side
of strikes more and another less expensive than their binomial prices. In
other words these correction terms create a smile and while Volga regulates
the curvature, Vanna affects the skew. The parameter σ affects the level of
the at the money volatility.

The graphs in figures 6.3 and 6.4 show various smiles that can be obtained
by changing one of parameters α3 and α4 and setting the other one to be
zero. If both parameters are zero, then the smile is almost flat, because the
option prices are equal to the binomial prices. Changes in α3 affect the slope
of the smile, while the changes in α4 affect the smile’s curvature. We would
like to point out that we consider both positive and negative values of α3.
Due to the negative correlation between stock prices and their volatilities the
smiles of stock markets are skewed in favor of low strikes. This corresponds
to positive values of the parameter α3. Nevertheless foreign exchange rates
may have either positive or negative correlations with their volatilities and
therefore their smiles may be skewed in favor of either low or of high strikes,
corresponding to either positive or negative values of α3.
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Figure 6.2: Volga of a 1 year option, r = 0.03, σ = 0.3.
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Figure 6.3: Volatility Smiles Against α3, (α4 = 0).
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Figure 6.4: Volatility Smiles Against α4, (α3 = 0).

6.2.2 Calibration Algorithm

There are three model parameters to be calibrated: σ, α3 and α4. Our
model has the same drawback as many other market models: it is impossible
to fit its parameters to the whole implied volatility surface at once. Fit-
ted parameters are different for different expiration dates especially for very
short and very long maturities. Maybe a way to overcome this problem is the
introduction of a term structure on the calibration parameters, which might
make the model more realistic but will substantially increase the number of
parameters. We run the calibration procedure for each maturity indepen-
dently, hence we find a set of parameters for all options with various strikes
and the same maturity date. A different set of parameters corresponds to
each maturity date.

A straightforward three-dimensional calibration is extremely time con-
suming: each new value of volatility σ requires recalculation of Vannas and
Volgas for all nodes of the binomial tree (5.2). To avoid this, we perform the
minimization in steps. Each step involves calibration of α3 and α4 for a fixed
value of the volatility parameter σ. The parameter σ changes from step to
step in order to fit the at the money implied volatility.

For each maturity the model is fitted using three market option prices —
an at the money Call option Φ1, an in the money Call option Φ2 and an out
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of the money Call option Φ3. If we denote their market prices respectively

by Φmarket
1 , Φmarket

2 , and Φmarket
3 the calibration algorithm is described

by the following equations:

(αi3(σ
i), αi4(σ

i)) = arg min
αi

3,α
i
4

{

Err(σi, αi3, α
i
4)
}

, i = 0, 1, . . .

Err(σ, α3, α4) =
3
∑

j=1

∣

∣

∣
Φmarket
j − {Φj}m{0},0(σi, αi3, αi4)

∣

∣

∣

σi = σi−1 − σi−1
∆ , i = 1, 2, . . .

σi∆ = σ̂
(

{Φ1}m{0},0(σi, αi3(σi), αi4(σi))
)

− σ̂
(

Φmarket
1

)

,

i = 0, 1, . . .

σ0 = σ̂
(

Φmarket
1

)

,

where σ̂(P ) denotes the implied volatility corresponding to the option price
P . In other words, we begin with σ equal to the at the money implied volatil-
ity and then on each step minimize the error function by changing parameters
α3 and α4. Changing α3 and α4 changes the at the money volatility of the
model smile. So after choosing the values for these parameters we change the
value of σ in such a way that the at the money volatility of the model is equal
to the at the money volatility of the market. We follow this algorithm until
the fitting error Err(σi, αi3, α

i
4) is smaller than a certain tolerance parameter

ε:

Err(σi, αi3, α
i
4) > ε

This algorithm has two drawbacks. First, its results depend on the choice
of in the money and out of the money options. As an example let us consider
the historical prices on the 6th of February 2006 for European Call options
on the German stock index DAX expiring on the 16th of June 2006. The
closing price of DAX on that date was 5652.11. We calibrate the model twice.
First to the options with strikes 5050, 5700 and 6400 (which approximately
corresponds to Deltas equal to 0.9, 0.5 and 0.1 respectively) and then with
strikes 5350, 5700 and 6100 (corresponding Deltas are approximately 0.75,
0.5 and 0.25). The fitted parameters are presented in table 6.2. One may
see that while the values of σ and α3 differ only moderately, the values of α4

differ by more than 25%. Nevertheless if we look at the smile fits in figure
6.5 we see that both parameter sets give a reasonably good fit. The first
set performs better for strikes far in and out of the money and the second
performs better for strikes closer to the spot price. Therefore the calibration
sets of options should be chosen carefully depending on the situation.
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parameter options set 1 options set 2
σ 0.1584 0.1595
α3 0.9469 0.9823
α4 0.7755 0.5534

Table 6.2: Fitted Parameters for DAX Jun 2006, Feb 6, 2006
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Figure 6.5: Fitted Smiles for Two Sets of Options.
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Figure 6.6: The Error Function for a Fixed σ. DAX Jun06, Feb 6, 2006.

As a second drawback we should mention the fact that the is no guar-
antee that the result of the algorithm is the global 3-dimensional minimum.
Nevertheless, the empirical experience with our algorithm suggests that for
a fixed σ = σ̄ the function Err(σ̄, α3, α4) has no other local minima in the
neighborhood of the solution: see figure 6.6 for the graph of the fitting error
of Jun06 DAX options for σ = 0.1584. We got similar pictures for other op-
tions and other values of the volatility parameter. Moreover, the algorithm
converges for all smiles we have experimented with. With a faster computer
one could use the result of our fitting procedure as the initial point for a full
three-dimensional minimization.

6.2.3 Calibration Results

For the calibration of the model we used the data for a few dates in Febru-
ary 2006 for DAX European options kindly provided by Saen Options BV.
We have chosen DAX because its price is defined on the basis of reinvested
dividends, or in other words, its price dynamics do not have discrete divi-
dends. The historical average growth rate for DAX changed from negative
to very positive in the past 5 years. We decided to fix the value of the drift
parameter µ at 5% because both interest rates and volatilities were very low
in the beginning of 2006. The values of the calibrated parameters and the
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av. vol av. vol
date σ α3 α4 error error

25-75 ∆
06.2.2006 0.2353 1.7605 0.4046 0.000082 0.00030
13.2.2006 0.2419 1.9198 0.3264 0.000080 0.00021
20.2.2006 0.2391 1.9234 0.2944 0.000081 0.00027
27.2.2006 0.2365 1.7820 0.3418 0.000059 0.00025

Table 6.3: Calibration Results for DAX June 2007 option on various dates

fitting errors can be found in Tables 6.3, 6.4 and 6.5. One can see that the
values of the parameters are pretty stable and qualitatively follow our expec-
tations. If we compare figure 6.8 with table 6.4, figure 6.7 with table 6.3 and
figure 6.9 with table 6.5 we see that flatter smiles have lower values of the
risk function parameters α3 and α4 and that lower smiles have lower values
of σ. Note that parameter α4 in table 6.4 increases as the time to maturity
becomes smaller. This increase reflects the fact that the curvature of implied
volatility smiles is higher for shorter maturities.

Error function in tables 6.3 and 6.5 is the value Err(σ, α3, α4) for the set
of calibrated parameters, e.g. the sum of the errors in prices for the three
chosen options. Average volatility error is the average absolute difference
between market and calibrated implied volatilities for all options considered,
(not just three). For shorter maturities (see options expiring in March, April,
June and September 2006) we compare average volatility errors calculated
over strikes corresponding to Deltas 0.05 to 0.95 and 0.25 to 0.75, see the last
two columns in tables 6.5 and 6.4. For longer maturities (see options expiring
in June 2007 in table 6.3) data for strikes corresponding to Deltas below 0.4
was not available. For those options we took the average over all available
strikes (approximately from 0.8 to 0.4 Delta). Usually the volatility bid-ask
spread for DAX options is 0.001-0.002. So all our fits are always inside the
bid-ask spread boundaries and are well inside the boundaries for strikes closer
to the spot price and for options with longer maturities.

Figures 6.10-6.20 present the fitted smiles — the implied volatilities of
the prices produced with the fitted parameters — plotted against the mar-
ket implied volatilities. Overall we have managed to get very accurate fits,
especially for longer maturities. Shorter maturities demonstrate a slight dis-
crepancy at the far ends of the range of strikes. Note that almost everywhere
our model underestimates volatilities for small strikes due to the shape of
Vannas and Volgas in that area (see figures 6.1 and 6.2). We would like to
stress that those values of strikes correspond to values of Delta less that 0.1,
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Figure 6.7: Market Volatility Smiles for for DAX June 2007 on various dates

av. vol av. vol
expiration error error error

date σ α3 α4 function 5-95 ∆ 25-75 ∆

17.3.2006 0.1569 1.3954 2.8020 0.000002 0.00098 0.00081
21.4.2006 0.1542 1.0256 1.2986 0.000001 0.00072 0.00048
16.6.2006 0.1584 0.9469 0.7755 0.000002 0.00087 0.00060
15.9.2006 0.1625 0.8836 0.3794 0.000011 0.00091 0.00037

Table 6.4: Calibration Results for DAX of various expirations on the 6.2.2006

av. vol av. vol
error error error

date σ α3 α4 function 5-95 ∆ 25-75 ∆

06.2.2006 0.1569 1.3954 2.8020 0.000002 0.00098 0.00081
13.2.2006 0.1579 1.5116 3.5816 0.000001 0.00042 0.00015
20.2.2006 0.1457 1.7144 4.4663 0.000001 0.00090 0.00064
27.2.2006 0.1430 1.5437 4.8973 0.000065 0.00012 0.00008

Table 6.5: Calibration Results for DAX March 2006 option on various dates
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Figure 6.8: DAX Volatility Smiles for Various Maturities on the 6.2.2006
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Figure 6.9: Market Volatility Smiles for for DAX March 2006 on various
dates
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Figure 6.10: DAX June 2007, 6.2.2006

which means that Call options with those strikes are very strongly out of the
money. Moreover the fitting errors for options prices are much smaller than
those for implied volatilities.



98 Chapter 6

0.9 0.95 1 1.05 1.1 1.15
0.21

0.22

0.23

0.24

0.25

0.26

0.27

0.28

0.29

K/S

vo
la

til
iti

es
13.2.2006 DAX Jun 2007

market
model

Figure 6.11: DAX June 2007, 13.2.2006
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Figure 6.12: DAX June 2007, 20.2.2006
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Figure 6.13: DAX June 2007, 27.2.2006
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Figure 6.14: DAX March 2006, 6.2.2007
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Figure 6.15: DAX March 2006, 13.2.2006
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Figure 6.16: DAX March 2006, 20.2.2006
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Figure 6.17: DAX March 2006, 27.2.2006
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Figure 6.18: DAX April 2006, 6.2.2006
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Figure 6.19: DAX June 2006, 6.2.2006
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Figure 6.20: DAX September 2006, 6.2.2006
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Conclusions and Discussion

In practice the hedging process does not satisfy the assumptions of the
Black-Scholes model. Traders do not hedge continuously because of transac-
tion costs and time constraints and often do not choose low risk over a high
but risky profit. The goal of this thesis is to construct a model reflecting
these aspects of option hedging in real life.

First we studied a model where a trader is allowed to rebalance his or her
portfolio only at fixed dates. The trader’s goal was to minimize the expecta-
tion of the squared difference between the value of the hedging portfolio and
the option’s payoff. We followed the theory of the mean-variance hedging of
Schweizer [45]. For a special case of an underlying process with independent
returns we have found an explicit solution for the minimization problem. For
this special case we derived an analytical formula for the variance-optimal
measure, a martingale measure with the smallest L2 norm of its Radon-
Nikodym derivative with respect to the real-world measure. As a corollary
we were able to prove explicitly in a simpler way the result of Schweizer that
the optimal initial capital is the expectation of the option payoff under the
variance-optimal measure. We also proved that under the assumption of in-
dependent returns the variance optimal measure converges in the sense of L2

convergence of Radon-Nikodym derivatives to the risk-neutral measure if the
distances between hedging dates go to zero. This implies that the optimal
initial capital converges to the Black-Scholes price.

Next we constructed a new optimization model, the model with cost of
risk. In its setting the hedging dates are also fixed but instead of minimizing
the distance between the portfolio value and the options’ payoffs the trader’s
goal is to maximize the expected total profit from hedging a portfolio of
options. The risk of the trader is controlled not by a utility function, which
is very difficult to determine in practice, but by an extra bank account with
an interest smaller than the interest rate on the regular bank account. This
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additional bank account is thought of as a capital reserve. According to the
risk of his or her portfolio, the trader has to keep a certain amount of money
in the reserve. Borrowing this amount under the risk-free rate and investing
it under a lower rate in the reserve account makes the trader lose money.

We introduced the notion of indifference selling and buying prices of a
portfolio of options in the presence of another portfolio of options. These
prices depend on the trader’s book and the buying and the selling prices are
different, so the model is able to capture bid-ask spreads. For a special form
of the risk function depending on the portfolio Greeks we found explicit solu-
tions for the maximization problem and analytic formulas for the indifference
prices. We proved that the indifference prices were adjusted binomial prices,
with the adjustment term dependent on the expected differences between
the risk functions of two portfolios: the trader’s book and the portfolio to be
priced. The indifference mid price was defined as the average of indifference
buying and selling prices. The indifference mid prices were calibrated to the
market. We were able to obtain a very good fit and the fitted parameters
demonstrated a stable behavior.

The model with cost of risk is relatively simple and instead of using utility
functions defines the trader’s risk explicitly in terms of Greeks, observable
market parameters. The main limitation of this model is that it cannot be
fitted to the whole implied volatility surface at once. The model parameters
are fitted per maturity. Thus it is impossible to use one set of parameters to
calculate the risk of a whole trader’s book, which usually contains options of
more than one maturity.

Some further research may be done in the direction of a better fitting
algorithm and a faster procedure for the pricing. The study of the properties
of the fitted parameters such as their dependence on time might also be
interesting. We suggest a few extensions of the model for consideration. We
have already mentioned a possible introduction of the term structure on the
model parameters.

Another one is incorporating dividends in the dynamics of the underlying
price process. Including continuous dividends is pretty much straightforward.
This will only affect the parameters of the binomial model and the formulae
for the Greeks. Including continuous dividends allows to fit the model to the
foreign exchange option prices. Discrete dividends are a bit more subtle, but
it seems that adjusting the binomial tree and the Greeks in a proper way will
solve the problem.

An important step is extending the model with cost of risk to pricing
American and other path dependent options. Here some changes to the
dynamics of the portfolio value might be necessary.

Some research may be done to find the continuous limit of the model.
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A first step is to keep the hedging dates fixed but to consider a continu-
ous dynamics for the underlying process and a continuous adjustment to
the amount on the reserve bank account. Letting the distance between the
hedging dates go to zero will lead to continuous trading strategies and an
Hamilton-Jacobi-Bellman partial differential equation for the solution of the
optimization problem.
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